統合設計環境

PCB設計者のための統一設計環境について、リソースライブラリをご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
フィルターをクリア
設計のヒント:PCBリリースビューを使用して出力ジョブファイル処理を自動化する Altium DesignerでPCBリリースビューを使用して出力ジョブファイル処理を自動化 1 min Blog オレンジの皮を剥く方法はたくさんありますが、言うまでもなく、その中には良い方法とそうでない方法があります。そして、設計から製造および組立ての出力を生成する際にも、この格言は真実です。このPCB設計のヒントでは、FAEのDave Cousineauが、Altium Designer®のPCB設計リリース機能を使用して、出力ジョブを管理する再利用可能で非常に効果的な方法を説明しています。 Altiumプロジェクトに必要なドキュメントの要件を定義して保存するために出力ジョブファイルを使用することは、非常に効率的で強力な機能です。出力ジョブファイルによってサポートされる出力タイプが増えるにつれて(AD10にはフットプリント比較レポート、STEPファイルエクスポート、3Dムービー作成が追加されました)、または企業のドキュメント要件が増加するにつれて、必要な出力コンテナの数は非常に多くなる可能性があります。現在、Altiumの出力ジョブファイルエディタ自体では、バッチジョブ用に一度に複数の出力コンテナの内容を生成する方法はありません。したがって、完全なドキュメントパッケージを生成するには、多くのマウスクリックが必要になるかもしれません。 AD10は、設計を生産にリリースするための標準出力を備えた新しいデザインデータ管理プロセスを導入しました。このプロセスの目的は、Altiumのリビジョンコントロール統合と新技術を活用して、自動化された高完全性のジョブ出力設計リリースシステムを提供することです。しかし、リビジョンコントロールやVaultsを使用してい ない お客様でも、提供される自動化の一部を利用することができます。この自動化は、一つまたは複数の出力ジョブファイルをバッチ処理するために使用でき、以下に概説されています。 出力ジョブファイルの編集 出力ファイルプロセスの最初のステップは、リリースプロセスがそのコンテナを検出するように出力コンテナを設定することです。これは、コンテナの設定で「変更」リンクを最初にクリックすることによって行われます: 基本パスが[Release Managed]に設定されてい ない 場合は、現在の基本出力フォルダの名前をクリックします。 これにより、[Release Managed]と[Manually Managed]の選択肢を示す小さなウィンドウが表示されます。[Release Managed]オプションを選択します。これで、出力は[Manually Managed]フォルダ名によって指定された場所に書き込まれるのではなく、メインの出力場所はリリースプロセスによって決定されます。 Base Pathが現在[Release 記事を読む
電力ネット管理 - 第2弾 電源ネット管理 - 第2弾 1 min Blog 最近のブログ投稿「パワーネット管理」について、非常に興味深く、有益なコメントが多数寄せられました。多くの人が議論に参加してくれるのを見ると、私にとって心温まることです。これらの貢献は、パワーマネジメントの領域がいかに広大で複雑であるかを理解するのに役立ちました。 最近のブログ投稿「 パワーネット管理」について、非常に興味深く、有益なコメントが多数寄せられました。多くの人が議論に参加してくれるのを見ると、私にとって心温まることです。これらの貢献は、パワーマネジメントの領域がいかに広大で複雑であるかを理解するのに役立ちました。皆さんにとって、どのようなタイプの設計を行っているにせよ、明らかに非常に重要な領域です。 これらのコメントの多くは素晴らしい提案やアイデアを提供しています。これらを一つにまとめ、整理し、前進するための明確で有用な方法を示すことを試みたいと思います。 この問題に取り組むにあたり、まずは対処すべき問題をより明確に定義し、分類することから始めたいと思います。そうすることで、電力管理を「エネルギー消費」(言葉遊びをお許しください)が少なくなるようにするために、各問題または問題のクラスごとに、可能な解決策のアプローチを提案しようと思います。その際、これらを実装するために必要な開発努力を見積もろうと思います。 最初のタイプの問題は基本的なものです。 各電力ネットワーク(コンポーネントに電力を供給するために関与するネットのセット)は、最終的には何らかの外部電源に接続されるべきです。また、任意の外部電源もどこかに電力を供給するべきです。特定の電力ネットワークでは、基本的な予算制約を守るべきです(生成される電力は消費される電力以上であるべきであり、共通のネットに接続するデバイスの動作電圧範囲は一致するべきです)。また、電力ネットワークが信号(プルアップやプルダウンを指します)と相互作用する場合、実際のエラーを覆い隠すような偽のエラーが生成されるべきではありません。 次に、より複雑な性質の問題があります。 各電力ネットワークの予算は、供給されたものが適切に分配され(各部品が正しく機能するため)、最終的にはあらゆる可能な運用状況下で収集されるように、正確に管理されるべきです。懸念されるのは、供給側でどの電圧の下でどれだけの電流が提供され、それがどのように収集され返されるかです。 最後に、もっと高度な問題があります。 最終的には、使用される部品の電力要件を物理的に満たす方法でPCBを設計する必要があります。繰り返しの作業やエラーを避けるために、これらの設計制約は回路図情報から自動的に計算されるべきです。そして、結果が適切であることを確認するために、最終的なPCB設計をシミュレートする必要があります。これらは、電力および分割面の設計、ルート管理、熱管理、部品のストレスなどの問題領域に関するものです。 単純な電力接続のチェック 最初の一連の基本的な問題については、電力ネットワーク、そのノードとその基本的な特性を定義する手段があれば、基本的なチェックを比較的簡単に実行し、設計者の注意を潜在的な問題に集中させることができると思います。 私が考えている基本的なチェックは次のとおりです: ネットワーク上に少なくとも一つの電力の生産者が存在する。ネットワークで生成される電力は、消費される電力以上である。 ネットワークに接続されたデバイスの電圧範囲は、少なくとも交差するべきである。 重要な問題は、これを実装する実用的な方法は何かということである。 まず、電力ネットワークを「構築」する方法を考えてみましょう。電力ネットワークとは、単にそれが必要な部品に電力を提供するために関与するネットのセットに過ぎません。 私は、これを定義する目的を達成するための良いメカニズムとして、部品の透視図を見つけます。 前の投稿で提案されたグラフィカルな表現が適切でないことを理解しており、完全に指摘された点を理解しています 記事を読む
協同設計パート1:統合チームとしてのPCB設計 コラボレーティブデザイン パート1:チームでのPCB設計の最適化 1 min Blog 電子設計はもはや一人で行うものではありません。製品を市場に出すためには、数十人から数百人の設計者、エンジニア、サプライヤー、製造業者、その他多くの人々のチームワークが不可欠です。このブログシリーズでは、障壁を切り抜け、設計サイクルを遅らせる退屈な往復の対話を減らす方法を探ります。第1部では、効果的なコラボレーションツールにどのような機能があるか、また、人々が設計においてどのように協力できるかの異なる方法について見ていきます。 現在では、電子設計プロジェクトを一人、または小さな中央集権的なチームだけで完了させることは非常に珍しいです。より一般的には、世界中に広がる大きな設計者とエンジニアのチームがこの目標を達成するために協力しています。そして、ご想像の通り、このようにして一つの設計について調整し、協力することは決して小さな仕事ではありません。問題は、実際の障壁を切り抜け、真の設計協力を可能にするにはどうすればよいかということです。 明確にするために、 本当の協力とは、設計者が単一のプロジェクトで選択したように一緒に作業できることを意味します。これは、設計の異なる領域で並行して、または必要に応じて比較・統合して単一の製品を完成させるために連携して作業することです。もちろん、真の協力を実現するには、いくつかの顕著な特徴を持つ能力のあるツールが必要です:可視性、差別化、および統合。 今はっきりと見える 他のチームメンバーが何をしているかを理解することは、設計全体の視点を提供します。これは、PCBレイアウトの同時編集など、複数の人が並行して作業している場合に特に当てはまります。ここで 可視性 は、それぞれの設計領域を把握することで、互いの足を踏みにじることを防ぐのに役立ちます。 図1: PCB設計ソフトウェア上で他の設計者の作業を見ることができる可視性は、設計全体に対する視点を提供します。 このための明らかな類推は、さまざまな人々の位置を示す地図です。しかし、地図の代わりに、私たちは設計プロジェクトの高レベルビューを持っており、各人の位置の代わりに、彼らが設計に加えた変更を持っています。この機能の有用性は、それがどれほど反応が良いかに完全に依存しています。デザイナーは他の人の変更をリアルタイムで見ることができますか?それとも、最終設計に自分の変更をコミットした後にのみ見ることができますか? エボニーとアイボリー PCBを設計する際に、他の人が何をしているかを 見る ことができるだけでは十分ではありません。コラボレーションは、各デザイナーによって行われた変更が互いに、またプロジェクトの以前の反復と比較され、設計がどのように発展したかを見る限り、本当に機能しません。コラボレーションツールにとって、これは 差別化 、つまり、設計変更を比較し、それらの違いを認識することに boils down します。 記事を読む
FPGA設計におけるメタステービリティの低減 FPGA設計におけるメタステービリティの低減 1 min Thought Leadership ここでは、デジタル回路、そしてFPGA設計におけるメタスタビリティの概念について見ていきます。そして、その「出現」を、その影響を軽減する実証済みの設計原則に従うことで大幅に減少させる方法についても説明します。 メタスタビリティ!これが何らかの未来的な保持容器や力場の完全性に関連していると思われるかもしれませんね。「ワープドライブのフラックストライアングレーターとクリオニックエンベロープのメタスタビリティが臨界レベルに達しています、キャプテン!」 しかし、日々デジタル電子機器と向き合っている皆さんにとって、この用語は軽蔑と尊敬の入り混じった反応を引き出すかもしれません。 ここでは、デジタル回路、そしてFPGA設計におけるメタスタビリティの概念について見ていき、その「出現」を、その影響を軽減する実証済みの設計原則に従うことで大幅に減少させる方法について説明します。 メタスタビリティの説明 メタステービリティは、デジタル回路内のレジスタ(または古い言い方をするとクロックされたフリップフロップ)の出力に関するもので、出力端子が「メタステーブル状態」に入る可能性があります。FPGAデバイスは通常、D型フリップフロップを使用します。このような状態に入る方法を見る前に、レジスタの動作に関連するいくつかの基本的なキータイミング要素を思い出すことが良いでしょう: 「セットアップ時間」 - これは、次のクロックエッジが到着する前に、レジスタへの入力が安定していなければならない最小時間です。データシートでは通常、Tsuとして表示されます。 「ホールド時間」 - これは、クロックエッジの到着後、レジスタへの入力が同じ安定した状態で続く必要がある最小時間です。データシートでは通常、Thとして表示されます。 「クロックから出力までの遅延時間」 - これは、クロックエッジが到着した後、レジスタの出力が変化するまでの時間量です。これは、レジスタの「安定時間」または「伝播遅延」とも呼ばれます。例えば、Tco、またはTphlとTplhとしてデータシートに表示されることがあります。 信号が異なる非同期クロックドメイン間で移動する場合 – 全体の設計内の異なる、または関連しないクロックで動作しているデジタルサブサーキット – メタステービリティに遭遇する可能性があります。これは、設計の非クロック領域から同期システムへのデータ転送にも当てはまります 記事を読む
電源ネット管理:回路基板のベストプラクティス 電源ネット管理:回路基板のベストプラクティス 1 min Thought Leadership 最近のBugCrunchアイテム(電源入力対出力)は、Altium Designer®での長年にわたる電力管理の問題を提起しました。PCB製造は、ビア、はんだマスク、はんだなど、考慮すべき項目が多いため、複雑なプロセスになり得ます。私たちが同じページにいることを確認するために、作業を開始する前にPCB組立に関するいくつかの意見があります。 いつものように、皆さんの考えやコメントに非常に興味があります。これに関して私たちが行うことが現実の役に立つことを確実にすることが私の目標です。 まず、問題を私がどのように見ているか、そしてそれをどのように対処すべきだと思うかを説明させてください。 今日のAltium Designerでは、電源ピンは一般的に電力の使用者を示すために使用されます。電源ピンはERCの時に他のピンとは異なる扱いを受けることができます。 しかし、完全な電力分配システムを簡単に識別して管理することはできません。 その結果、電力不足のコンポーネントやショート(多くの人を夜も眠れなくさせることでしょう)のような致命的なエラーを避けるためには、より高いレベルの注意が必要です。 PCB設計レベルでは、電力を分配するネットのセットを「電力ネットワーク」と呼びます。同様に、電流をグラウンドに集めるネットのセットも別の「電力ネットワーク」を構成します。 これらの電力ネットワークのそれぞれにおいて、外部電源リソース(電力を供給する電源またはグラウンドへの接続)に接続するユニークなポイントがあります。このポイントに接続されたネットは、真の電力ネットです。 また、これらの電力ネットワークのそれぞれにおいて、(電流制限抵抗、ネットタイ、ヒューズなどの)数々の「透過」コンポーネントがあり、ネットワーク全体の観点からは、一つのネットを別のPCB設計者に接続する(ただし、特定の必要特性を持つ接続)だけのものです。 以下は、プリント基板レベルでのそのような電力ネットワークの抽象的な表現です。 上の図では、トレースネットは赤で描かれ、赤いボックス内のネットが全体の電力ネットワークを構成しています。このネットワーク内では、電力ネット指令が「Main PWR」というネットを、実際に電力が供給されるユニークなネットとして識別します。 ネットは青で描かれ、青いボックス内のPCBレイアウトの電源ネットは別の全体の電源ネットワークを構成します。このネットワーク内では、電源ネット指令が実際に地面に接続されている唯一のネットである「Main GND」としてネットを識別します。 各電源ネットワーク内で、一つのトレースネットのみがプリント基板上の電源ネットとして識別されます。また、電源関連のオブジェクトを含む各ネットは電源ネットワークの一部であるべきです。 プリント基板プロジェクトの回路図では、「電源ネット指令」と呼ばれる新しい指令が利用可能になります。特定のネットに配置されると、それを外部電源リソースに接続する電源ネットワーク内の唯一のネットとして識別します。 この新しい指令は、簡単に識別できるようにこのように見えるかもしれません。 また、「Part 記事を読む
PCB製造において避けるべき5つの要素 PCB製造において避けるべき5つの要素 1 min Thought Leadership PCB設計者 PCB設計者 PCB設計者 最後のデザインレビューが完了し、必要な承認の署名をもらい、作業がほとんど完了した状況を想定してみます。コンポーネントが調達され、基板のレイアウトが完成しても、最大の課題がまだ残っています。設計の意図を製造部門へ正しく伝えなければ、設計にかけた何か月もの時間と、チームの労力は水泡に帰すことになります。 しかし、このような設計の後段階の処理は、どのような方針で行えばいいのでしょうか? 製造部門に必要なすべてのファイルを出力するためのツールは用意されています。しかし、デジタルの情報から物理的な品物への翻訳プロセスは、それほど簡単で明瞭なものではないのは明らかです。実際のところ、何か月もかけて完璧な基板レイアウトを作成しても、設計の意図を製造用ドキュメントで明確に伝達できなかったために、大きな失敗が引き起こされることも考えられます。 ドキュメント作成プロセスにおいて遵守するべき真理が1つあるとするなら、それは従来の常識を否定し、 より多くの詳細を記載する方が、少ないよりも良いと考えることです。それでは、ほとんどのPCB設計者が一般にドキュメント作成プロセスで見過ごしている細かい詳細は何でしょうか? PCB製造業者から最も嫌われる5つの点の概要をここに示します。ドキュメント作成のプロセスにおいて、これらの点に留意すれば、設計が却下されることを防止できます。 #1 - PCBドキュメントの内容が不完全である 当然のことのようですが、PCBの設計プロセスや仕様を、製造業者が必要とする重要なファイルへ変換する作業は決して単純明快なものではありません。そして、製造業者へ送るドキュメントに1つの間違いがあっただけでも、製造業者で大きな混乱を招き、生産プロセス全体を停止させてしまう可能性があります。不完全な内容のPCBドキュメントが製造業者の手に渡ることを防ぐため、次のようないくつかのガイドラインを頭に留めてください。 使用しているPCB設計ツールで、出力ドキュメントを手作業で生成する必要がある場合、出力するファイルに注意し、それらが単一のリポジトリ内で整理されていることを確認します。 製造業者に製造用のファイルを送付する前に、製造業者がどのようなファイルを、どのフォーマット(Gerber、ODB++、その他)で要求しているのかを正確に確認しておきます。 単一の社内用CADファイルを製造業者に送り付け、そのファイルを読み取れるソフトウェアを相手が持っていることに期待してはいけません。 簡単に言うと、完全なPCBドキュメントパッケージには、製造業者に必要なすべてのファイルが、推定作業の必要なしに簡単に解釈できるようなファイル形式と構造で、整理されて含まれている必要があります。製造業者に冗長なファイルや、エラーの含まれているファイルが渡った場合、製造プロセスの遅延を引き起こすことになり、是非とも回避すべき事態です。 完全なドキュメントデータパッケージ(出力ジョブファイル) #2 - クラスの種類が示されていない クラス2はPCBドキュメントの業界標準ですが、もし別のクラス(1または3)で設計を行った場合、マスター図面は大幅に変化します。このため、次のガイドラインに従って、正確にどのクラスが使用されているのかを明確にすることが重要です。 製造業者が、標準のクラス2プロセスが必要なものと想定しないよう、PCB製造および組み立て図面の両方に、必要なクラスで推奨される構築標準を明確に示しておくことをお勧めします。 記事を読む
PCB ECOワークフローを簡素化・自動化する方法 PCB設計環境の自動化:PCB ECOワークフローを簡素化・自動化する方法 1 min Thought Leadership 回路図とPCBレイアウト設計の変更に異なるプログラムを使い分けることは、時間とお金の両方を消費します。Altium Designer®は、コンポーネントリンクを使用して回路図とPCB間でデータを自動的に転送する統合設計システムでこの問題に対処します。ECO手順を自動化することで生産性を向上させるコンポーネントリンクの詳細について読み進めてください。 回路図からPCBへ、またはその逆へのデータ転送は、伝統的に複数のツールやソフトウェアにまたがる作業です。ECOを生成することは通常、あるプログラムから設計の一部をエクスポートして別のプログラムにインポートすることを含み、これは煩雑でコストのかかるプロセスになりがちです。データのインポートやエクスポートを一切行わずにECOワークフローを自動化する方法があったらどうでしょうか?PCBワークフローを簡素化する方法を見てみましょう。 コンポーネントリンクで接続を保つ Altium Designerの主な利点の一つは、設計プロセスのすべての側面を扱うことができる単一の統合環境を提供することです。Altium Designerは、回路図エディタとPCBレイアウトをコンポーネントリンクで統合することにより、ECOの生成時の自動化を実現します。 コンポーネントリンクは、回路図エディタとPCBレイアウトを結びつけるものです。回路図とPCBの間の接続を確立するために、Altium Designerは設計に配置された任意のシンボルにユニークIDを自動的に割り当てます。このユニークIDは、PCB上に配置された際にシンボルを関連するフットプリントにリンクし、設計プロジェクトの回路図とPCBをスキャンしてこれらのリンクされたコンポーネントを見つけます。コンポーネントリンクを使用すると、次のことができます: 回路図からPCBレイアウトへのデータを自動的に双方向転送します。 設計データのインポートとエクスポートを行わずに、簡単にECO(エンジニアリング変更命令)を実行できます。 設計のすべての側面を単一の統合環境で扱えます。 設計の変更は、2つのプログラム間でデータを転送するような些細なタスクで複雑になるべきではありません。当社のPCB設計ソフトウェアは、コンポーネントリンクを利用して回路図とPCBレイアウト間のプリント基板設計のすべての側面を通信することで、プロセスを簡素化します。 ECOプロセスを簡素化するためにコンポーネントリンクがどのように使用されるかに興味がありますか? コンポーネントリンクでECOを自動化するについての無料ホワイトペーパーをダウンロードして、詳細をご覧ください。 記事を読む