Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
リソース&サポート
Renesas / Altium CEO Letter To Customers
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Courses & Certificates
Training Previews
On-Demand
Instructor-Led Trainings
大学・高専
Programs
Educator Center
Student Lab
Altium Education Curriculum
オンラインストア
Search Open
Search
Search Close
サインイン
統合設計環境
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
統合設計環境
統合設計環境
PCB設計者のための統一設計環境について、リソースライブラリをご覧ください。
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
電気技術者
PCB設計者
ソフトウェア
Altium Designer
コンテンツタイプ
ビデオ
ホワイトペーパー
高電圧設計向けのPCBレイアウトについて計画する方法
1 min
Thought Leadership
以前、都市プランナーの友人とトレイルランニングをしていたことがあります。私が疲れてやる気を失くしてしまう前に少しでも長く走らせようと企んだ彼女は、街の区画整理や建設に関することについてあれこれ聞かせてくれました。地元の政治の裏話に興味をそそられた私は、走る辛さを忘れたものです。 友人は賛成しないでしょうが、高電圧PCB向けのレイアウトは複雑な都市計画にいくつかの類似点があります。高電圧PCBでは通常のPCB設計に関する検討事項に加え、最終製品の最高性能を確保し、寿命を迎えるまで保護するために、基板全体で電界強度を制御、最適化できるレイアウトが必要になります。 高電圧領域の分離 都市計画で区画地域を指定し、土地の用途を制限するのと同じように、設計者は高電圧回路をグループ化し、基板の他の部分への影響を最小限にしなければなりません。高電圧と低電圧の領域を分離することで、基板でのアーク放電のリスクを低減できます。 高電圧の領域を物理的に分離する方法の1つは、周辺にinsertを追加することです。基板のレイアウトを作成する際は、insertを配置した場所にルータ加工する長穴を配置します。長穴が実装できるかどうかや、長穴の許容差については、製造業者に確認する必要があります。 基板の中で最も電圧が高い領域の近くに長穴を配置すると、過電圧になる可能性が高くなります。 Proto Express は、度重なるアーク放電に耐え得るよう長穴を設計することを推奨しています。長穴の最小幅は、基板で想定される最高電圧で 十分な保護 を確保できるものでなければなりません。長穴のサイズに少しマージンを追加すれば、コロナ放電やアーク放電で長穴の縁が炭化しても、PCBは損傷を受けずにすみます。これが重要なのは、縁がアーク放電による損傷を受けるのに伴って、PCB材料の耐性が低下するからです。 長穴は、基板の他の機能やビアと同様に、製造中にルータ加工されます。これが完了すると不活性絶縁材が長穴に追加され、垂直の障壁が形成されます。電圧が低ければPCB材料を使用できるものの、電圧が高い場合はポリエステルやテフロンなどの材料を使用したほうがよいでしょう。insertはクリップや接着剤で固定できるほか、長穴やinsertを所定の場所にロックできる形状に設計することも可能です。 高電圧の領域を分離することは、基板全体の電圧を徐々に下げるために重要 基板全体の電圧を徐々に低減 電圧の高い領域を分離した後も、残りの部分を「区画分け」して電圧を徐々に下げられるようにしなければなりません。ここでは、メインの導体の周辺に低電圧で稼働する回路を配置することで、電界を再分離できます。電界強度が低い領域では、コロナ放電やアーク放電が発生する可能性が低くなります。 高電圧設計での電界の分離には、 電圧浮動環 や電界格子環も使用できます。これらの環は、設計で保護される高電圧源のAC/DCの特性に応じて、抵抗やコンデンサーと連動したり、 終端として機能したりします。かなり高度な設計コンポーネントのため、使用を検討する場合は資料を詳しく確認することが推奨されます。 ノイズ源の分離
記事を読む
リアルタイムクロック設計でベストプラクティスに従うべき理由
1 min
Thought Leadership
目覚まし時計が午前3時15分で止まっていたせいで、学校に遅刻した経験はありませんか? 高校のとき、目覚まし時計が鳴る音はあまり心地よいものではなかったものの、母が呼ぶ大声ほどには耳障りではありませんでした。時計が止まったのは電池切れのせいだとわかっていましたが、もっと注意していれば、電池が少なくなるにつれて時計の動きが遅くなことに気付いていたでしょう。そうすれば電池が切れる前に交換して、母の金切り声を聞かずに済んだでしょうに。すっかり大人になった今では、学生時代の目覚まし時計ではなく、 リアルタイムクロック (RTC)の設計に取り組んでいます。一般に、RTCは、設定された基準に対して現在の時間を刻み続ける集積回路(IC)です。RTCは通常、メインシステムの電源が切られた後も動作を続けるように設計されており、最小限の電力しか消費しません。仮にシステムのRTCが故障した場合、その影響は母親のお説教よりもずっと悪いものになります。RTCが重要になる理由と設計時のベストプラクティスについて確認していきましょう。 RTCが組み込みシステムで重要な理由 時計が正しくないと、人事部門が困ることになります。 データ駆動型で時間の影響を受けやすい組み込みシステムは、そのほぼ全てでRTCを搭載しています。これは、特定の動作を実行するために正確な日付と時間が必要だからです。例えば、設定された時間に基づいて、異なるアクセス優先度を有効にするドア セキュリティシステムがあるとします。RTCが故障すると、正しい時間帯に作動させてもドアが開かないかもしれません。 そのほかに、記録されたイベントとアラートが、信頼できる監査証跡として使用される組み込みシステムでは、RTCが非常に重要になります。例としては、従業員の報告した日時を人事部門が追跡する出勤管理システムや、アラームイベントの記録を保持する必要のある火災警報システムが挙げられます。 RTC設計にベストプラクティスを導入していないと、大きな損害につながるおそれがあり、特に制御装置が現場に実装済みの場合はなおさらす。以前私が勤めていた職場では、駐車場システムの独立した支払い制御装置で、RTCの問題が発生したことがありました。RTCの時間が実際の時間よりも徐々に遅くなっていき、駐車料金の間違いで顧客を怒らせてしまったのです。 RTC設計で避けるべき一般的なミス RTC回路の設計には、通常5つのコンポーネントしか必要ないため、簡単な業務のように思えるかもしれません。必要なのは、専用RTCチップまたはマイクロコントローラーに組み込まれたRTC、水晶振動子、一対のコンデンサー、コイン電池です。私は、ベストプラクティスとして、次の設計ガイドラインを常に守るように心がけています。 1. 水晶振動子をできるだけRTCの近くに維持し、トレース長を可能な限り短くします。こうすることで、ノイズ結合の生じる可能性を低減できます。 2. RTCと水晶振動子の間またはトレースの下に、その他のトレースを配線しないようにします。これは、クロック信号に不要な干渉が結合しないようにするためです。 3. RTC回路の近くに 高速信号 を配線しないようにします。
記事を読む
低電力ワイヤレス通信用のRFテクノロジー: Ambient Backscatter
1 min
Thought Leadership
私は家族の再会が好きですが、私の拡大家族は40人もいるため、これはかなりの大事になります。カードで遊んだり、水泳をしたり、または夕食のテーブルなどどこでも、常に誰かが冗談を言ったり、話を始めたりします。実際に、ほとんどの人々が話を始めるため、皆に聞いてもらうには叫ばなくてはならないこともあります。電磁スペクトルの中での通信も、このように困難な場合があります。デバイスは多くの場合、データを伝送するために、空中に自分の信号を「叫ぶ」必要があります。この伝送には電子機器とエネルギーが必要で、一部のデバイスでは容積やバッテリー駆動時間の関係で実現できません。ワシントン大学の研究グループは、Ambient Backscatterによる通信を使用して、これらの問題点の解決を試みています。この方法により、データの伝送に必要な回路と電力が何桁も減少する可能性があります。Ambient Backscatterがワイヤレスネットワークへ実際に使用可能なら、大規模なモノのインターネットのセンサーネットワークに極めて有用となるでしょう。 Ambient Backscatter 技術者は、周囲の世界が電磁気信号に満ちており、その多くは人間の設計するデバイスにより生成されることを熟知しています。これらの伝送は他のデバイスにより検出可能で、さらに 発電にも使用可能 です。これらは意図しない受信機と干渉する可能性もあるため、FCCは 放射放出 について厳しい規制を行っています。しかし、これらの研究員たちは、空中の周囲の信号を逆に利用して、デバイス間で情報を伝達する方法を発見しました。 IoTセンサーとデバイスのバッテリーを 環境発電システム に置き替えることについては、最近多くの議論が行われています。一部の人々は、テレビ局の送信など高エネルギーのRF信号を電力に変え、デバイスに供給することさえも想定しています。このアイディアは いくつかの理由から 完全に実用的ではありません。しかし、この主な理由の1つは、単に電力が十分ではないということです。最低でもマイクロプロセッサー、センサー、ワイヤレス回路に電力を供給し、多くの場合は メモリ にも電力を供給可能な必要があります。低消費電力のプロセッサー、センサー、 メモリ は存在しますが、ワイヤレス接続には代償が伴います。ただし、Ambient Backscatterを使用すれば話は別です。
記事を読む
ウェアラブル デバイス: 機能的でお洒落なテクノロジー
1 min
Blog
電気技術者
両親が若い頃の古い写真を見て、「どうしてこんな見苦しい服を着ていたんだろう?」と思うことがありますか? 私が特に気になるのは大きな眼鏡です。ファッションは重要です。流行は変化にするせよ、そのことは昔から変わっていません。モノのインターネット(IoT)やウェアラブル電子機器において、美観は多くの場合に軽視されています。設計者は機能と外観を同時に開発するのではなく、機能を先に決めて、外観とフォームファクターは後回しにする傾向があります。製品を売るためには、ファッションも重要であることを理解する必要があります。外観と機能を適切に両立させた、3つのデバイスを紹介しましょう。 上品なギーク 映画やテレビ番組を見れば、ギークは以前としてあまり外見が良くないことに気づくでしょう。Fonzieは、年をとってもBig Bang TheoryのSheldonよりもお洒落です。電子機器を購入する人々はオタクのように見られることを望まず、多くのウェアラブルはこの点で失敗しています。 IoTは 我々が予測したほど 急速に成長していないことが、最近のニュースで明らかになっています。これには いくつかの理由 があり、 低消費電力ワイドエリアネットワーク(LPWAN) などのスマートビルディング テクノロジーが遅れていることもその1つです。ウェアラブルはIoT市場のごく一部に過ぎず、その主な理由は 不便である ことと、お洒落でないことです。 利便性については既に解説しました し、 中高齢者 から見たファッションの側面についても説明しました。高齢者は、自分の命を救ってくれるなら、格好の悪いデバイスでも身に付けるかもしれません。しかし他の人々は、時計が命を救ってくれることを期待していません。期待するには、時間が分かること、アラームで通知してくれること、歩数をカウントしてくれること、そして外見がいいことです。見た目が悪ければ、お金を費やす価値はありません。それよりは、時間を見るためにはお洒落な時計を購入し、それ以外は携帯電話を使用する方がいいでしょう。ガジェットは適切に動作するだけでなく、格好良く見えることが必要です。
記事を読む
PCB設計におけるDRC: 設計の失敗の防止
1 min
Thought Leadership
私は長年にわたって小さなボートを所有しており、水上での趣味に使用していましたが、いくつかの重要なルールに従う必要がありました。ルールの1つは、ボートを水に浮かべる前に、排水プラグを必ず取り付けるということです。新しいボートをが沈んでしまい、回収するために泳ぐくらいなら、ただ泳ぐため水に入る方がはるかに安くつきます。 ルールは自分たちを保護するためのものだということは、誰でも知っています。しかし、不注意または意図的に、ルールが無視されることもあります。回路基板の設計にも、従うべきルールがあります。さいわい、今日のPCB設計ソフトウェアにはデザインルール チェック(DRC)が組み込まれています。設計者はこれらを使用するだけで十分です。 ルールは設計の失敗を防止するためのものです。 基板のDRC 回路基板の設計のサイズや複雑性にかかわらず、デザインルールのチェックは行う必要があります。特定の設計は非常に単純なため、DRCに時間を費やす価値はないと主張する人もいます。しかし、最も単純な設計でも、予期しない設計違反を見逃したたために、大きな問題を引き起こす可能性があります。DRCにより、設計を製造のため提出する前に、設計の整合性を確認できます。回路基板設計のDRCは、ツールごとに名前や説明が異なるため、基板設計ソフトウェアでレイアウトに対してチェックすべき、いくつかの一般的な要素を以下に示します。 基板のテクノロジーのルール : レイアウトツールでは、設計の各種物理パラメーターの有効性、たとえば物理レイヤーが正しく定義され、重複していないことをチェックできる必要があります。 フットプリント : レイアウトツールは、設計に使用されているフットプリントを個別に、またはバッチモードでチェックできる必要があります。 コンポーネント : レイアウトツールを使用して、コンポーネントが適切なフットプリント用に正しく設定されているかどうかをチェックできます。また、コンポーネントの間隔や位置が正しいことや、グリッド上またはグリッド外、および基板の予想される輪郭内に正しく配置されているかどうかもチェックする必要があります。 ネット : 基板上の電気的なオブジェクト(ピン、ビア、配線、フィル、プレーン)のクリアランスや、他の電気的な制約をチェックするよう、デザインルールを設定できます。 高速
記事を読む
高電圧PCB設計についての検討事項
1 min
Thought Leadership
私は以前、高電圧の応用は電力工学だけに必要なものだと考えていました。発電所や変電所で働く気はまったくなかったので、高電圧PCBの設計について学ぶことを免れていたわけです。ところが、空間の応用に興味を持った時点で、その考えが間違っていたことに気付きました。そして、怠惰な自分と向き合わざるを得なくなってしまったのです。高電圧の応用は、製造や発電所から医療や航空宇宙まで、ほぼすべての業界に存在しています。 高電圧の応用に向けたPCBの設計では、設計や製造の全工程でさまざまな内容を検討しなければなりません。基板は過酷な状況で稼働することが条件となっており、部品や材料の寿命に大きな影響を受けます。これに挑戦しようという意気込みがある場合は、レイアウトの作成を開始する前に、いくつかの検討事項を確認しておきましょう。 動作周波数についての検討事項 製品の動作周波数は、 ESD と同様に高電圧設計に影響を及ぼし、 ノイズ管理 は基板に影響を及ぼします。これは、高周波が低い電圧でアーク放電を成し、信号線の周辺でより 厳重なスペース が必要になるからです。 周波数帯のもう一端にある低電圧DCについても、特別な検討が必要になります。特定の環境条件では、DC差動がエッチングやエレクトロ ケミカルマイグレーションの原因になることがあります。これらはどちらも望ましいものではなく、エレクトロ ケミカルマイグレーションは高電圧設計の性能や寿命により大きな危険をもたらします。というのも、導体パッドやトレースに whisker と呼ばれる微細な導電性のフィラメントが「成長」し、最終的には電位間でショートが発生する可能性があるからです。ここでは少なくとも、アーク放電を成しやすいポイントが発生し、基板の効果的な 沿面距離と空間距離 が減少します。 エレクトロ ケミカルマイグレーションはスズや銀で最も多く発生するものの、ときには銅でもフィラメントが破壊されることがあります。危険を最小限にするためには、不純物を含まないスズや銀をPCBの仕上げに使用しないことです。スズを使用する場合は、 鉛の含有量が少ないものが推奨されます
記事を読む
超低電力の不揮発性メモリの誕生を予測させるスピン波技術の飛躍的な前進
1 min
Thought Leadership
私の大学では、量子力学が必修須科目ではありませんでした。何かを真に「理解する」ことは不可能で、わかるのはその確率だけだ、というのが前提だったのです。私には少しばかげた考えのように思えました。その後、私は上級電磁気学と信号処理を学びましたが、意味のわからない膨大な量の数字に対処しなければなりませんでした。一部の学生がこの講義を選択してくれたのは本当にうれしいことです。現在の量子技術を飛躍的に進展させてくれているのは、彼らにほかならないのですから。最近、ある研究チームがスピントロニクス(スピン波エレクトロニクス)での発見を詳述した論文を発表しました。この発見によって、メモリなどの実際のスピントロニクス デバイスのための道が切り開かれるかもしれません。こうした記憶装置には、不揮発性や超低電力駆動といったいくつかの強みが備わることになるでしょう。これらの利点は、モノのインターネット(IoT)などの組み込みアプリケーションにとっては最適な選択肢になる可能性がありますが、フラッシュメモリにとっては手ごわい競合になるでしょう。 スピン波技術 最近の大躍進の話に進む前に、まずはスピン波技術がどういうものなのかを確認しておきましょう。その後で、研究者チームが発見した内容についてご紹介します。 従来の電子機器では、電子電荷を使って情報の保存と操作が行われます。 トランジスタには、電流を流すオンの状態と電流を流さないオフの状態 があります。スピントロニクスでも電子が利用されますが、情報は電荷特性ではなくスピンを使って 保存されます 。電子スピンにも2つの状態がありますが、これらは放射される小さな磁場を測定することで識別されます。この研究チームは、エレクトロニクスのベースをトランジスタからスピンに置き換える方法を見つけたのです。 最近、シンガポール国立大学のチームは、スピン波の分野を 飛躍的に進展させました。スピントロニクスの問題の1つは、異方性が原因で波信号の方向がバラバラになってしまうことのようですが、Adekunle Adeyeye教授が率いるこの研究チームは 新しい構造 を使って、同じ信号を複数の方向へ同時に伝搬させました。この構造では外部の磁場が必要ないため、実装がより簡単になります。チームは以前、外部の磁場がない状態で スピン波信号を送信、操作する方法を発見しました。これら2つの発見を組み合わせれば、スピントロニクス デバイスの誕生にさらに近づけるでしょう。 電子は次のトランジスタになるかもしれない スピントロニクスの強み 新しいからといって、それが必ず役に立つとは限りません。では、スピン波の技術は何を実現してくれるのでしょうか? スピントロニクスにはメモリの応用に活用できる
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
3
ページ
4
現在のページ
5
ページ
6
ページ
7
ページ
8
Next page
››
Last page
Last »