Filter
Clear
Tags by Type
Software
ストリップライン対マイクロストリップ: その違いとPCB配線のガイドライン ストリップライン対マイクロストリップ: その違いとPCB配線のガイドライン 筆者は、初めて高速設計技術についての説明を聞いたとき、全く頭に入ってきませんでした。これは、筆者が設計者としてのキャリアを開始したばかりだったので、困惑の原因が経験不足であったことは確かです。ストリップラインおよびマイクロライン配線の概念そのものが全く理解できませんでした。講師が、自分になじみのない全く異なるタイプのPCBについて話していると思いました。幸い、それらがストリップラインやマイクロストリップというPCBではないことを知って、この困惑はすぐに解決しました。そうではなく、ストリップラインおよびマイクロストリップは、PCBに高速の伝送線路を配線する、2つの異なる方法でした。 ストリップラインとマイクロストリップは、場合によっては理解しにくいものです。ですから、設計初心者やこのトピックについての再トレーニングを探している設計者に、この基本レビューは最適です。 ストリップラインおよびマイクロストリップについて ストリップラインおよびマイクロストリップとは ストリップラインおよびマイクロストリップは、PCBに 高速伝送線路を配線する方法です。ストリップラインは、PCBの内層の2つのGNDプレーンに挟まれた、絶縁材で覆われた伝送線路配線です。マイクロストリップ配線は、基板の外層に配線された伝送線路です。このため、絶縁材によって単一GNDプレーンから分離されます。 マイクロストリップは、基板の表面層に伝送線路を配線するため、ストリップラインよりも優れた信号特性を持ちます。1つのプレーンと1つの信号層から成るレイヤ構成で製造プロセスがより単純なため、マイクロストリップは基板の製造コストも節約できます。ストリップラインは、2つのGNDプレーンの間に組み込まれた配線をサポートする複数のレイヤが必要なため、製造がより複雑です。ただし、ストリップラインでコントロールされるインピーダンストレースの幅は、同じ値のマイクロストリップのインピーダンストレースより狭くなります。これは、2つ目のGNDプレーンによります。このようにトレース幅が狭くなると、回路を高密度にできるため、よりコンパクトなデザインが可能になります。ストリップラインの内層配線はEMIも抑え、より確実な危険防止策を提供します。 ストリップラインとマイクロストリップには異なる長所があります。どちらの方法がよいかの判断は、設計ニーズに基づいて行う必要があります。高密度の高速設計では、多くの場合、多層基板で2つの方法を併用して設計目標を達成します。 さらに、高速設計で伝送線路を配線する際、設計全体でコントロールされたインピーダンスを保持することは非常に重要です。伝送線路が配線されたPCBのレイヤー、伝送線路トレースの物理特性、絶縁体の特性は全て、 回路に最適なインピーダンス値を設定するため、一緒に計算する必要があります。インピーダンスの計算に使用するストリップラインおよびマイクロストリップのモデルが異なる、さまざまな インピーダンスカリキュレーターがあります。 PCBの設計において重要なストリップラインおよびマイクロストリップ配線 ストリップライン配線およびマイクロストリップ配線の例 以下に、ストリップラインおよびマイクロストリップの配線技術の例と、それらの特性がインピーダンス計算に及ぼす影響を説明します。 マイクロストリップ。外層に配線された伝送線路がマイクロストリップとみなされます。これらのモデルは、トレースの厚みと幅、および基層の高さと絶縁体の種類に基づきます。 エッジ結合マイクロストリップ。この技術は、差動ペアの配線に使用されます。標準的なマイクロストリップ配線と同じ構造ですが、モデルは、差動ペア用の配線スペースが加わり、より複雑です。 エンベデッドマイクロストリップ。この構造は通常のマイクロストリップと似ていますが、伝送線路の上に別の絶縁体層がある点が異なります。ソルダ―マスクは絶縁体層とみなすことができ、インピーダンス計算で考慮する必要があります。 シンメトリックストリップライン。(2つのGNDプレーンの間の)内層に配線されるストリップラインは、シンメトリックストリップライン、あるいは単に「ストリップライン」配線とみなされます。マイクロストリップと同様に、このモデルは、2つのプレーンの間に組み込まれているトレースに応じて調整された計算により、トレースの厚みと幅、および基層の高さと絶縁体の種類に基づきます。 アシンメトリックストリップライン。シンメトリックストリップラインモデルと似ていますが、このモデルは2つのプレーンの間で厳密には層間の中心にない伝送線路を考慮しています。 エッジ結合ストリップライン。この技術は、内層の差動ペアの配線に使用されます。標準的なストリップラインと同じ構造ですが、モデルは、差動ペア用の配線スペースが加わり、より複雑です。
Susy Webb: 主体的な学習と成功、PCB設計カンファレンス OnTrack Newsletters Susy Webb: 主体的な学習と成功、PCB設計カンファレンス Susy Webb: 私はヒューストンにあるFairfieldNodalに勤めており、弊社は陸上および海洋環境向けの石油探査ならびに観測機器を製造しています。弊社が製造するデバイスは一定の領域内で広がり、地底深くに送られて戻ってくるエネルギーの波動を受信します。これらのエネルギーの波動を解析すると、特定領域の地中に石油鉱床があるかどうかを予測することができます。 Judy Warner: 基板設計に携わってどのくらいになりますか。また、これまでに設計したその他の製品について教えてください。 Webb: PCB設計の経験は35年になります。サービスビューローや、メモリシステム、コンピューターマザーボード、産業用コンピューターの設計会社を経て、現在の石油探査企業は2社目です。私は難題とそれに伴う学習を楽しめるタイプなので、常に挑戦して自身を高めることで成長してきました。常に学ぶ姿勢を貫き、この業界で成長しようと努力する人は誰でも優れた設計者になれると考えています。上司や会社がカンファレンスへの出席を決めたり、雑誌記事を手渡してくれたりするのを当てにするのではなく、自身で責任を持って学習することです。私がカンファレンスの出席から得たものは非常に多く、これがその後の成長の基盤となりました。余裕のある限りあらゆる講座を受講しました。学位は持っていますが工学分野ではありません。講座やカンファレンスに出席して独学するか、または大学に戻って電気工学の学位を取得するという選択肢がありましたが、必要としている実用的な知識を電気工学課程で得られるかどうか確信が持てなかったので、カンファレンスへの参加を学費と同じ自己投資と見なすことにしたんです。 Warner: 人々が移動や自費での支払いに抵抗を示すのはなぜだとお考えですか? Webb : 予備のお金がないのかもしれないし、個人の技術や経歴にどれだけ大きな影響があるかを認識するための観点が不足しているのかもしれません。特定の企業文化に浸かり、その企業のやり方だけに固執して、必要なことはすべて身につけたと思い込むのはよくあることです。一社にずっと留まるのであれば問題はありませんが、一時解雇が実施されたり、転職を希望したりする場合はどうでしょうか。私の考えでは、設計者は自身の経歴に主体的に取り組むべきです。これには、書籍や資料の購入と、あらゆる学習の機会への参加が含まれます。 FairfieldNodal 石油探査機器 Warner: どのようにして、設計者としての経歴を築かれましたか? Webb: 多数の講座や書籍、人脈や優れた指南役との出会いがありました。さまざまな書籍や論文を購入し、印をつけながら読みました。たとえば、Bruce Archambault、Lee
PCB設計意図 DraftsmanでのPCBA図面作成によるPCB設計意図の伝達 多くの企業にとって、製品開発中に見落とされがちな重要なステップが図面作成です。時には、関与する詳細のレベルが高いために図面の作成に時間がかかりすぎることもあります。他の場合、企業は外部の契約業者や製造業者に図面の作成を依頼することもあります。また、自社で図面を作成している電子機器企業は、通常、機械設計用のアプリケーションを使用しており、これは時間がかかり、エラーが発生しやすい作業です。 図面作成の手作業部分を効率化する方法がなければ、図面作成は時間がかかるプロセスであり、追加のコストがかかりますが、製造業者は無欠陥のPCBA製造を保証するために標準的なPCB製造および組み立て図面を必要とします。昨年の古い機械設計用アプリケーションを使い続ける代わりに、企業はより賢明で、コスト効果の高いソリューションを利用すべきです。 図面はPCB設計の意図を示す 市場に大量にリリースされる革新的な製品を開発する企業は、どこでも自社の製品を生産できるようにする必要があります。ある製造業者の能力制約が、複数の製造業者との契約を余儀なくさせるかもしれませんが、生産に関わる全員が同じボードを同じ品質と収率で製造できるようにするための何らかの方法が必要です。 これがあなたの図面が活躍する場所です:複数の製造業者から同じ製品を生産できるようにするために、製造パートナーが知る必要があるすべてを示します。サービスビューロで働いている場合、同じ考え方がお客様にも適用されます。提供する図面には、お客様がどこでも、実質的にどの製造業者とも製品を生産できるように必要な情報をすべて含めるべきです。これは聞こえるよりも複雑かもしれませんが、標準的なPCB製造プロセスを通じて製品を進めるために必要な特定の情報を含めることが求められます。 下の図面は、設計を正確に製造し、基本仕様を満たす裸のボードを生産するために必要なすべての情報を示しています。ここでは、図面に含まれる重要な情報がいくつかあります: 性能と資格要件をリストした製造ノート スロットと穴が明確に見えるボードのアウトラインの寸法図 異なるドリル穴サイズを表すシンボルが完備されたドリル図 会社、著者/アーティスト、プロジェクト、製品情報を含む完全なタイトルブロック レイヤー情報をリストしたスタックアップ図 含まれる可能性のあるその他の情報には、 インピーダンス表、外部文書で述べられた要件を含むノート、 テスト要件、製造能力に関するさらなる許容差などがあります。 PCB製造および組立てノートは、見積もりフォームに記入できる内容よりもはるかに詳細な情報をリストアップする機会を提供します。これらのノートを図面に直接配置することと同様に、デバイス設計要件、機能要件、製造および評価要件など、デバイスを完全に理解するために必要なすべてをリストアップした設計要件文書を準備することが一般的です。 要件文書の作成はまだ完全に手動ですが、最高のPCB設計ソフトウェアを使用すると、文書化プロセスの一部を迅速に自動化できる部分があります。それは図面の作成です。自動化された図面ツールを使用すると、設計に必要な製造および組立て要件を完備したPCBAのドラフトを迅速に作成することができます。 シンプルで実用的な統合ソリューション ECADネットワークが文書化で不足している部分は、 Draftsman®での図面作成が、ECADアプリケーションから製図ソフトウェアへの情報の手動転送の必要性を排除することで補います。Draftsmanテクノロジーは、このプロセスを内蔵の自動化でシームレスにするだけでなく、将来の設計に利用できるPCBの技術図面の作成も可能にします。全体として、これにより設計意図が開発プロセスの早い段階で伝えられ、製品の製造および組立てが容易になります。Draftsmanの図面エディタは、これらのプロセスに以下のような利点をもたらします: 製品設計の理解しやすいグラフィカルな表現を提供する
OnTrack Newsletter 2017年8月 OnTrack Newsletters OnTrack Newsletter 2017年8月 On Track Newsletter 2017年8月 第1巻第5号 AltiumのOn Trackニュースレター、8月号をお届けします。PCB設計者が集まる電子機器業界のイベントでは必ずと言っていいほど、次世代のPCB設計者はどこから現れるのかという疑問に会話が流れます。古い技術者は引退しつつありますが、それらの技術者が去った後の空隙を埋める新しい技術者は現れません。私の観点からは、新しいPCB設計者が出現する方法はいくつも考えられますが、私の事例を紹介する代わりに、弊社の次世代設計者特集に登場した、非常に才能ある若い設計者として、Nicole Pacinoを紹介しましょう。 今月のOn Trackビデオシリーズでは、Chris CarlsonがPCB設計プロセスの要約を解説します。 Altium®が組織として成熟するにつれ、次世代の設計者を育て上げるとともに、現在のPCB設計者に道具を提供するソリューションの一部であることが必要であると理解するようになりました。このために弊社が決定した興味深い方法の1つは、 AltiumLive 2017: 年次PCB設計サミット と呼ばれる、毎年2日間にわたって開催される新しいイベントで、今年の10月から開始されます。業界の有力な方々や、同業の設計者の皆様のために弊社が用意した素晴らしい催しや、確固としたプロフェッショナル開発コースの数々について、以下にご紹介します。会場に限りがありますので、ご予約はお早めに! 引き続きOn Trackをお楽しみください! Judy Warner