Filter
Clear
Tags by Type
Software
インタラクティブなPCB自動配線を最大限に活用するPCB配線 Thought Leadership インタラクティブなPCB自動配線を最大限に活用するPCB配線 数年前、私は家の屋根を替える手伝いをしました。最初の作業は古い屋根板の撤去でした。1度に1枚ずつ屋根板を引きはがして私は得意満面でしたが、プロの屋根職人がこちらにやって来て首を左右に振りました。その職人は、雪かきのようなシャベルを使って、私が手で5枚引きはがすより少ない時間で200~300枚の屋根板を撤去しました。その日、私は屋根の上で、よい仕事をするためには常によりよい方法を探す必要があることを学びました。 PCB設計の配線でも、私たちは作業を行うためのより効率的な方法を求めます。設計者は、おそらく、可能な限り最も整然とした配線を手動で行うのに必要な時間がわかっています。また、オートルーターならより短時間で作業を完了できるが、 望ましくない配線結果になることも知っています。屋根板をはがすためのより有効な方法としてシャベルがあったように、私たちには、より効率的に配線できる自動インタラクティブルーターがあります。 「自動インタラクティブルーター」という語をあまりご存知ない設計者にとって、これは 比較的新しい配線技術です。この機能は、手動による配線の外観と精度を提供しながら、 1秒あたり約1つのネットを配線できるよう設計されています。自動インタラクティブルーターはバッチオートルーターではありません。また、基板全体を配線するようにも設計されていません。これは、ユーザーがコントロールし、ルーターが作業を行う、インタラクティブなPCB自動配線機能です。 自動インタラクティブルーターは、ほとんどの場合プロセスの時間を短縮できますが、これによってとりわけ効率化される回路の領域があります。特に、レイヤーを変更せずに特定の順番で接続する必要がある単一または複数のネットがそれです。さらに具体的には、point-to-point配線、BGA breakout配線、バス配線などです。 Point-to-point配線 ご存知のとおり、PCBには多くのpoint-to-point接続があります。例えば、狭い回路グループのコンポーネントピンを接続する短いネット、SMTパッドからのビアのエスケープパターン、基板の全長にわたるネットなどです。手動での配線は難しくはありませんが、時間がかかります。オートルーターは非常に短時間で配線できますが、基板の他の部分に望ましくない配線が行われる可能性があります。オートルーターの使用を短い接続に限定することはできますが、使用に先立ち設定時間が余分に必要になります。 自動インタラクティブルーターは、信じられないくらい高速で同じ配線を行います。ユーザーは、配線するネットを選択して ルーターを動作させるだけです。自動インタラクティブルーターは、データベースで設定済みの設計規則に従い、可能な限り最短の経路を使って配線を行います。また、オートルーターでは必要となるような面倒な設定はありません。 自動インタラクティブルーターは最短でpoint-to-point 接続をするようにうまく機能します BGA配線 BGAから手動で配線する前に、最適なネットの接続順序を明らかにしておく必要があります。設計者が可能な限り最も効率的な配線パターンで配線し、BGAを接続するには、この順序が重要です。効率的な配線パターンは、基板に配線を追加するための空きスペースを残すだけでなく、ビアを不要にします。ビアは他の配線に必要になるかもしれないスペースを使ってしまいます。また望ましくない信号特性を引き起こす可能性があります。オートルーターによるBGA配線では、通常オートルーターが最適なネットの接続順序を選択しないので、実際のところビアの数が増えます。 このような場合、自動インタラクティブルーターが役に立つことができます。自動インタラクティブルーターは、ユーザーに代わってすばやくBGA接続の順序を決定します。ユーザーが選択したネットは、配線が有効になっている基板レイヤーにトレースを均等に配分できる順序で評価されます。続いて、ビアを使用せずに統一性のある精密な配線パターンでBGAを接続するよう、配線が行われます。これらの統一された配線パターンでは、後のトレース調整や配線編集のために必要な予備の基板スペースができます。 バス配線で、自動インタラクティブルーターは別の強みを発揮できます バス配線 多くの場合、バスは統一された配線パターンを作成するため、手動で配線します。統一された配線パターンでバスを配線しなかった場合、
自動インタラクティブルーターの配線がオートルーターより整然としている理由 Thought Leadership 自動インタラクティブルーターの配線がオートルーターより整然としている理由 少年の頃、私の部屋は常に散らかっていました。あらゆるものがどこにあるかわかっていると思っていたので、掃除する理由はありませんでした。最終的には、両親と友人からの強いプレッシャーに屈し、私は部屋を掃除しました。違いは驚くべきものでした。足の踏み場ができて、はるかに歩き回りやすくなりました。 オートルーターによるPCB配線についても同じことが言えます。オートルーターの配線は、 見た目が悪く雑然とする ことが知られています。そのような基板は、場合によっては追加設計が難しく、またいいかげんな設計に見える可能性もあります。こういった望ましくない配線は、通常次の3タイプのいずれかに分類されます。 1) バス配線の分割 2) 長く曲がりくねった配線 3) 望ましくないコーナーやスタブがある配線 何年もの間、PCB設計者は、オートルーターのスピードを必要とするたびに、配線に関するこれらの問題に対応してきました。自動インタラクティブルーターは、代替ルーターとしてはあまり知られていませんが、オートルーターに付き物の配線の問題はなく時間を節約することができます。 均一なバス配線 オートルーターは、PCBの配線時に多くの問題を引き起こす可能性があります。最初に目を引く問題は、バス配線の分割です。 バス配線は、類似するネットをグループ化した、均一な配線パターンです。例えば、8ネットのデータバス(D0からD7)はできる限りすき間なく配線する必要があります。このような配線は、トレースの長さとトポロジーを一致させることで、データバスの信号特性を維持します。 オートルーターは、バスをグループとして配線せず、バス内のネットを別々のものとして認識します。各ネットを配線するため、オートルーターは、そのバス配線から他のネットの配線を押しのけます(push & shove)。全てのネットの配線が完了したときには、オートルーターは、均一なバスを完全に分割しています。 これに対して、 自動インタラクティブルーター は、デザイン内の全てのネットではなく、ユーザーが選択したネットを操作します。また、パターン幅、クリアランス、レイヤー、およびトポロジ―についてユーザーが設定したネットおよびネットクラスのデザインルールに従います。その結果、整然として緻密なパターンのバス配線になります。さらに、自動インタラクティブルーターでは、オートルーターが配線方向を決定するのとは異なり、ユーザーがバス配線の経路を指定します。
PCB設計における自動インタラクティブ配線とPCBオートルーターは何が違うのか Thought Leadership PCB設計における自動インタラクティブ配線とPCBオートルーターは何が違うのか 編集クレジット: Santiparp Wattanaporn / Shutterstock.com しばらく前、私は第二次世界大戦時代に戦闘機パイロットが訓練に使っていたAT-6に乗って、空を飛べる機会をいただきました。飛行機の大ファンである私にとって、これほど素晴らしいプレゼントはありません。飛行体験までの5か月間は、大きな期待に胸を膨らませていました。そして、当日。それまでに感じたことがないほどの喜びをかみしめながら、いよいよ真っ青な空に向かって離陸です。パイロットは緩横転を披露してくれました。ところが、トップガンに対する私の期待は粉々に崩壊しました。それからのフライトは、飛行機酔いのための袋に顔をうずめて過ごすことになったのです。自分の身体が高速のアクロバット飛行に耐えられないのだとわかったとき、本当にがっかりしました。 それは、PCB設計で初めてオートルーターを使ったときの落胆と同じ気分でした。というのも、オートルーターは私と同じ程度の能力で配線に対応してくれると期待していたのですが、残念ながら、配線後の設計はとんでもないことになっていました。配線自体は完了していたものの、体裁を整えるのに数時間や数日という長い時間がかかりそうなクリーンアップを手動で行う必要があったのです。 ところが、最近では自動インタラクティブ配線技術のおかげで、設計者は自動配線を活用できるようになっています。自動インタラクティブ配線は自動配線とは異なるだけでなく、多くの点で自動配線よりも優れています。自動インタラクティブ配線の利点についてお話しする前に、まずはオートルーターと自動インタラクティブルーターの基本的な違いを確認しておきましょう。 自動インタラクティブルーターとPCBオートルーターの違いとは? この2つのルーターは似ているようもののように思えますが、実際にはまったく違うものです。もちろん、どちらも配線エンジンですが、オートルーターではすべての配線が行われる一方で、自動インタラクティブルーターでは設計者が配線をコントロールできます。 オートルーターはスタンドアロンのアプリケーションとして長い間利用されてきました。現在ではPCBレイアウトソフトウェアと連動するようになっているものの、実行するには独自のデザインルールが必要です。これらのルールは手動で設定することも、レイアウトソフトウェアからインポートすることもできます。オートルーターを実行すると、設計に含まれるすべての有効なネットで配線が試みられます。ここでは、さまざまな配線ストラテジで事前に設定された条件を使って、一連の経路で配線が実行されます。完了すると、設計者は自動配線されたトレース情報をレイアウトアプリケーションにインポートし、既存の配線と置き換えます。オートルーターによって配線された使いものになるトレースの分量は、設計者の設定に完全に左右されるものの、結果は思い通りにはならないでしょう。 一方、自動インタラクティブ配線がうまくいくかどうかは、設計者が追加で設定した内容に左右されません。自動インタラクティブルーターはレイアウトアプリケーションに不可欠なため、 既存のデザインルール が使用されます。これらのルールは、一般的な手動の配線で使用されているものです。自動インタラクティブルーター用のコマンドも、レイアウトツールの既存の配線メニューから簡単に使用できます。設計者は自動インタラクティブルーターで配線するネットやネットのグループを選択し、自動インタラクティブルーターを実行するだけです。配線は設計者がコントロールできるため、高速な自動配線を使って基板を手動で配線しているような感覚で作業できます。 オートルーターの設定はかなり複雑になる場合がある 自動インタラクティブ配線と自動配線が異なる理由 オートルーターを正しく機能させるためには、たくさんの設定が必要になります。すべての配線が希望どおりに実行されるためには、オートルーターを仕込んでおかなければなりません。そのためには、オートルーターにデザインルールと配線ストラテジを読み込む必要があります。ネットクラスやトポロジーの制約といったデザインルールは、レイアウトソフトウェアからインポートできるものの、オートルーターで最高の性能を達成するためには微調整が必要です。とはいえ、ここで本当に困難になるのは、さまざまな自動配線のストラテジを設定することです。これらのストラテジでは、トレースの配線方法や配線を断念する前の試行回数を指定します。ここには誤った配線距離や、オートルーターが実行する配線のクリーンアップの試行回数も含まれます。自動配線のストラテジの作成は難しく、オートルーターがさまざまな状況でどのように機能するのか、ということは理解できるくらいの経験が必要になります。 一方、自動インタラクティブルーターでは面倒なストラテジの作成を行わずに、配線経路を指定できます。つまり、設計全体ではなく選択したネットでのみ配線が行われるため、オートルーターのようなストラテジが必要ありません。自動インタラクティブルーターは、配線の対象となるネットやネットのグループを選択すると実行できるのです。ここでは、ルーターによって配線経路が選択されるようにするか、設計者が手動で作成した経路をテンプレートとして使用するかを選択できます。配線経路のテンプレートを作成すると、配線が行われる場所を指定しながら、トレースを配線するという面倒な作業を自動インタラクティブルーターに任せることができます。 自動インタラクティブ配線では、一様な配線パターンの作成が可能 自動インタラクティブ配線では、自動配線されない
最高のPCB設計ソフトウェアとその仕組み 最高のPCB設計ソフトウェアとその仕組み 適切なツールの使用は、作業時間の大幅な短縮、コストの削減、フラストレーションの解消につながります。しかし、プリント基板に関しては、認知度が低かったり、ソフトウェアのアドオンであることから、多くの優れたツールが無視されているのが現状です。こうしたツールには、電流密度解析ツールの PDN Analyzer、MCADとの統合、インタラクティブ配線、マルチボードの対応、サプライチェーンの管理などがあります。これらの機能を使って、設計プロセスを簡素化し、時間を節約できます。すぐに始められるように、作業に役立つPCB設計ソフトウェアを一覧にまとめました。 電力分配ネットワーク(PDN)解析 電力設計は一見シンプルに見えるかもしれません。集積回路(IC)をパワープレーン、またはパワーレールに接続し、それらの動作を監視するだけです。簡単といえばそのとおりですが、ずさんな設計のPDNでは トレースの電流が過剰になったり、基板で電圧降下が生じる可能性があります。そのため、設計段階で対策を立て、基板のPDNを解決することが大切です。この説明だけでは十分にご理解いただけないかもしれませんので、PDN解析が基板設計で重要なステップになっている理由を見ていきましょう。 PDN解析は、なぜ重要ですか? 電流密度 : 現在、チップの性能は従来よりさらに強化されてきており、それに伴い、消費される電流もさらに大きくなっています。ご存じのように、電流密度が高くなると、温度が上昇します。トレースの電力密度が高くなると、放熱としてPCBに分散されるエネルギー量が多くなります。そのため、トレースが薄すぎると、高温で損傷してしまう可能性があります。多くの場合、 レイアウトの作業や アクティブまたは パッシブ冷却システムの設計によって問題の徴候に対処することばかりに集中しがちです。放熱に対する対応は必要ですが、電流密度を削減することで、その根本にある問題を解決できます。多くのシミュレーターでは、電流が過度になっている箇所が示されますが、それらはわかりにくい別のソフトウェアであることがよくあります。PDN解析がプログラムに統合されていれば作業が大幅に容易になり、基板上で電流が過度になっている箇所を視覚的に特定できます。 電圧降下 : 高電流密度と同様に注意が必要なのは電圧降下です。電力消費の多いチップで突然電流スパイクが発生したときに、そのトレースの大きさが不十分だと、深刻な電圧低下が引き起こされることがあります。実際、最近のICの動作に必要な電圧は小さくなる一方なので、小さな電圧降下であっても問題になる可能性があります。チップが10Vに近い電圧で動作している場合は0.5V低下しても余裕がありますが、2Vで動作している場合は、降下を避けることが不可欠です。電圧降下のソリューションはシンプルで、トレースを広げるか、短くするか、あるいはその両方です。ただし、解決すべき問題がなかなか検出できない場合があります。この場合、回路の電圧低下を視覚的に示す電流密度解析ツールのPDN Analyzerを使用すれば、どのトレースを広げる必要があるのか、あるいは再調整する必要があるのかを簡単に判断できます。 これらの問題についてPDNを解決する価値はありますが、PDN解析ツールのインターフェイスとデザインを行ったり来たりするのは面倒になる可能性があります。そのため、基板設計CADに統合されている 電流密度解析ツールの使用をお勧めします。PDN解析ツールをいつでも利用できるようにしておくと、外部の解析ツールを使用するよりも、これらの問題をすばやく検出し、解決できる可能性が高くなります。 MCADとの統合と3Dモデリング
高速PCB設計における考慮事項:コンポーネント形状の考慮点 Thought Leadership 高速PCB設計における考慮事項:コンポーネント形状の考慮点

高速PCB設計を開始する際には、レイアウトに入る前に考慮すべきことがたくさんあります。 回路図の整理、 基板材料 & レイヤー構成、重要なコンポーネントの配置、そして高速信号の配線方法はすべて 高速設計の側面であり、計画が必要です。 しばしば、他のすべてと同じくらい考慮されない領域があり、それはコンポーネントのフットプリント形状です。高速設計で使用されるコンポーネントは、通常の設計で使用されるものと物理的に異なるわけではありません。しかし、パッドやコンポーネントのフットプリント形状に微妙な変更を加えることで、高速PCB設計の努力を助けることができます。 高速PCB設計のためのパッド形状 高速設計で使用するフットプリント形状を評価する際に最初に考慮すべき項目は、フットプリントパッド形状のサイズです。ランディングパッドとも呼ばれるこれらの形状は、完成したPCB上でコンポーネントのピンがはんだ付けされる裸の金属パッドです。通常、1つまたは2つのパッド形状が複製されて、完全なコンポーネントフットプリント形状を作成します。 従来、PCBのパッドはピンよりも約30%大きいです。これらのサイズは、コンデンサや抵抗器のような表面実装部品が一方の側で立ち上がる「トゥームストーニング」といった問題を避けるために、最適な製造のために計算されています。これらの最適なサイズは、手持ちのはんだごてでの手作業による修正や、はんだ接合部の視覚的検査を可能にします。しかし、高速設計の場合、余分な金属は 寄生容量を増加させ、重要なコンポーネント間の接続長を増加させることがあります。 回路の高速化ニーズに対応するためには、パッドサイズを小さくする必要があります。実際のピンサイズから30%パッドを大きくするのではなく、5%のような小さいパーセンテージの方が有益です。小さいパッドサイズは、可能な寄生容量を減少させるのに役立ちます。また、コンポーネント間の間隔を縮めることで接続長も短縮できます。この実践は、ボードスペースを少なく使用するため、魅力的でもあります。小さいパッドサイズを使用しても、コンポーネントのピンとPCBとの接触面積が同じであるため、その機械的強度が低下することはありません。しかし、そのトレードオフはボードの製造可能性にあります。小さいパッドサイズと狭い間隔は、ボードの製造コストを増加させます。設計チームは、PCBをレイアウトする前に、設計の高速化ニーズと製造のための設計ニーズとを交渉しなければなりません。 パッド形状の角を丸くすることも、高速設計に利益をもたらす別の改善策です。角を丸くすることで、パッドに近づけてトレースをルーティングできるようになり、接続長を短縮し、配置された回路のサイズをコンパクトにするのにも役立ちます。 パッドとビアの形状を改善することは、高密度設計のスペーシングに役立つかもしれません ビアの形状も考慮が必要です Viaは通常、PCBコンポーネントの形状とは考えられていませんが、そのサイズが基板の不動産を影響するため、それもまた考慮する必要があります。また、高速回路の一部となる基板上の任意の金属も、その回路の一部として考慮される必要があります。トレースの長さ、viaのサイズ、およびviaの深さは、高速回路の計算にすべて考慮される必要があります。 最初に考慮すべきことは、viaの形状のサイズです。viaの形状のサイズは、穿孔された穴の直径によって決まるため、設計チームはレイアウト前に必要なviaのドリルサイズを検討する必要があります。小さいviaは高速信号の性能を向上させる一方で、製造コストを増加させます。しばしば、異なるサイズのviaが回路の要件やviaが電力またはグラウンドを伝導するかどうかに応じて使用されます。 viaのサイズが決定されたら、次に見るべきことは、コンポーネントパッドに対するそれらの配置です。従来、非高速設計では、製造目的で最適なパッドからviaまでの間隔を維持するために、viaはコンポーネントパッドから引き離されます。その後、パッドはトレースでviaに接続されます。しかし、これらの接続長は高速設計には長すぎるかもしれません。 接続長を短くするために、ビアをパッドに近づけたり、パッドの一部上に置いたり、あるいはパッドの完全に内側に配置することもできます。このようなビアの配置は、異なるCAD設定やDRC調整が必要になる場合があり、またはパッド形状内にビア形状を含めることもあります。また、デカップリングキャパシタのパッドとビアを繋ぐために、短くて幅の広いトレースを使用することは 良い実践です。