Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
マルチボードPCBシステム設計に対応する最良のツール マルチボードPCBシステム設計に対応する最良のツール 1 min Thought Leadership PCB設計者 システムエンジニア/アーキテクト PCB設計者 PCB設計者 システムエンジニア/アーキテクト システムエンジニア/アーキテクト 楽しい時間は早く過ぎると人は言います。私がマルチボードPCBを設計しているときに、時間がなかなか過ぎないように感じるのはそのせいかもしれません。 EMIの回避、 すべての正しい接地、 静電放電の軽減、 配線の最適化などを考えると、単一基板の設計でさえ大変なのに、物理的にも電気的にもすべてを適合させなければならないPCBシステムの設計となると、苦痛の限界が試されているように感じるときもあります。ところが幸いなことに、マルチボードの回路図の作成を懲罰から楽しみに変えてくれるツールが登場しています。このツールには基板間の接続、MCADインテグレーション、モジュールの組織化という 全般的なPCB設計に役立つ3つの機能がありますが、これらは特にマルチボードのPCBに有用です。まず、基板間のルールチェックは悪夢のような作業になるばかりでなく、基板を台無しにしてしまう可能性もあります。ところが、このツールを使用すると、異なる基板全体でのトレースの接続が単純化され、土壇場の変更があったときにも大いに役立ちます。次に、インタラクティブなモデルによって煩わしいクリアランスチェックが容易になり、すべてを整合させて筐体に収めることができます。最後に、モジュールの組織化では、過去に設計した基板やコネクターを使って、新しい回路を作成できます。 MCADとの統合 使っているプログラムに3Dモデリングツールを組み込んだところで大したことはないようにも思えますが、実際には設計プロセスに大きな違いをもたらすことができます。PCBのモデリングにMCADを使用することで、巨額なコストにつながるミスを回避できるほか、試作や製造に基板を安心して送れるようにもなります。別の場所にいる機構技術者が使っているツールがご自分の手元にあれば、基板を設計する方法が激変するでしょう。それがどのように実現するかを見ていきましょう。 3Dクリアランスチェック 基板を設計した後に試作品が高額になったり、製造の工程で基板が筐体に収まらなかったりしたことはありませんか? 私は一度そのような経験をしましたが、それは試作に送る直前に電解コンデンサーを設計に追加したときのことでした。後になって、クリアランスの計算が少し間違っていたことがわかったため、機構技術者に設計データを送ってモデリングとチェックをしてもらってから、モックアップに戻しました。製造の工程でそのようなミスが見つかってしまったら、上司に何と説明すればよいでしょう。クリアランスチェックはリスクが高くなりますが、特にマルチボードのPCBの場合はそれが顕著です。非常に高額な3Dパズルのようにすべてを適合させ、それを筐体に収める必要があります。筐体は社内のスタッフが設計する場合もあれば、そうでない場合もあります。私は自分のことを出来の悪い設計者だとは考えていませんが、使っているシステムの3Dモデルがなければ、気付きにくいミスをしてしまうでしょう。 いつでも可能なモデリング 今では大半の設計者が基板のコンピューターモデルを使っていますが、それらを構築するのは設計者ではなく、通常は機構技術者の仕事です。とはいえ、別の人に変更を何度も送ることなく、設計者自身がモデルを作ってクリアランスチェックができるとすればどうでしょう? これは、MCADプログラムを勉強して文字通りにすべて自分で作業をする、という意味ではありません。私が言いたいのは、 回路基板ソフトウェアに仕事をしてもらうということです。これを実現するのは、高度に統合されている優れたMCADツールです。現在では、個々のコンポーネントの3Dモデルを生成し、すべての要素を含む基板のモデルを作成できるツールが提供されています。高度なツールであれば、筐体の3Dモデルをインポートし、クリアランスチェックを実行できるものもあります。こういった機能があれば、誰かを間にいれることなくMCADを自分で進めることができます。たとえば、電解コンデンサーが適合しているかどうかも、ボタンを数クリックするだけで確認できます。 基板間のエレクトリカル ルールチェック エレクトリカル ルールチェックはソフトウェアによって自動的に基板レベルで実行されるため、通常はそれほど面倒なものではありません。とはいえ、接続が複数の基板にまたがる場合、接続を追跡するのはほぼ不可能です。システム全体をチェックし、電気的にも機械的にもすべてが適合しているかどうかを確認できるプログラムはごくわずかです。これが可能なツールでは、さまざまな基板にまたがってルールチェックを実行できるため、設計中のすべての準備を整えることができます。また、筐体の変更や他の外部的な要因によって、PCBで大幅に接続を修正しなければならない場合の再設計にも大いに役立ちます。 開発中のエラーチェック 記事を読む
階層回路設計はPCB回路図のレイアウトにどう役立つのか 階層回路設計はPCB回路図のレイアウトにどう役立つのか 1 min Thought Leadership 皆さんが働いている会社の構造は、組織図で明確にされていますか? だとすれば、階層構造がいかに便利なのかをご存知でしょう。誰が誰の部下で、どの部門が上下関係にあるか、といったことを把握していれば、特定の質問や仕事について誰と話をすればよいのかがわかります。一方で会社にそういった組織構造がない場合は、たくさんの混乱を招きかねません。 PCB設計の回路図の組織は会社の組織と似ています。小さな回路図であれば、1つや2つのシートに表示して簡単に作業できます。ただし、複数のシートで構成される回路図になると、異なるシートに分散した部品や機能を見つけるのが困難になることがあります。会社の構造を示す組織図と同じように、階層回路図では設計の構造が組織化されて表示されます。 階層回路図のレイアウトがもたらす利点は莫大になる可能性があります。そこで、回路図を階層化して設計に役立てるさまざまな方法をご紹介します。その前にまず、階層回路図がどのようなもので、CADシステムでどう機能するのかについて確認しておきましょう。 典型的なPCBの回路図 階層回路設計とは 階層回路設計(ブロック設計)では、異なる回路図の設計がメインデザインのトップシートにブロックシンボルで表示されます。大規模な設計では、ブロックシンボルのあるトップシートが複数になる場合もあります。一部のケースでは、トップシートのブロックシンボルが、ブロックシンボルの追加された 別のシートを示すこともあります。 トップシートのそれぞれのブロックシンボルは、回路図を表します。このよい例は、電源のあるプロセッサーの回路図でしょう。電源のブロックシンボルはプロセッサーデザインのトップシート上にあり、その電源の回路図を表しています。ブロックシンボルを選択して開くと、電源の回路図が表示されます。 階層回路図の作成と管理 設計で回路図の階層ブロックを作成するには2つの方法があります。 新しいブロックシンボルから子デザインを作成する: トップシートにブロックシンボルを作成し、そのブロックシンボルから新しい設計を開始します。このデザインは個別の回路図として保存されますが、新しい回路図はブロックシンボルによってメインデザインに組み込まれます。 既存のデザインをメインデザインに取り込む: 既存の回路図を取り込んで、メインデザインのトップシートに作成したブロックシンボルと関連付けます。 個別の回路図が組み込まれると、回路図エディターでデータの不一致が管理されます。もう一度プロセッサーデザインを例にしてみましょう。電源は個別の回路図ですが、そのブロックシンボルは、メインデザインの一部になっているプロセッサーの回路図に取り込まれます。また、すべてのネット名とデジグネータが一致するように管理されます。 階層は回路図レイアウトの整理に役立つ 階層回路図のレイアウトはどう役立つのか 階層回路図では、トップシートで設計のシステムレベルの機能を表示し、個々のブロックシンボルからそれぞれの機能領域へと降りていくことができます。これは工学技術者、テスト技術者、現場技術者が活用できる、回路図を整理するために極めて有益なツールです。また、階層回路図には下記の利点もあります。 回路の同一ブロックの作業負荷が軽減されます。たとえば、8つのチャンネルのデザインに対して、回路で同じ8つのチャンネルを作成する必要がなくなります。つまり、チャンネルの回路の回路図を一つ作成し、同じチャンネルのデザインに紐づく8つのブロックシンボルを配置するだけで済みます。また、回路図エディターでネットとリファレンスの名前が変更され、それらの不一致が解消されます。 記事を読む
PCBの設計と製造に関するヒント: PCB製造中の開回路を防止するには PCBの設計と製造に関するヒント: PCB製造中の開回路を防止するには 1 min Thought Leadership 私が数年間住んでいた町にはチョコレート工場がありました。それは魅力的であると同時に恐ろしいことでした。なにしろ、その工場では傷物の「二級品」を定価から75%引きで買えてしまうのです。カラメルを覆うチョコレートが割れているなど、たいていの欠陥は表面的なもので、味にはまったく問題ありません。 PCBの製造業者がミスをした場合も、それが表面的なものであれば基板はきちんと機能します。最終スクリーンの印刷のずれといったミスであれば電気的な性能に影響はないものの、ずれていたのがソルダーマスクや銅箔層だったとすれば、基板は完全に台無しになるでしょう。PCBの目的は電気的な配線であるため、性能上の重大な欠陥は、開回路、ショート、配線、材料破壊など、本質的に電気に関するものになります。 出所次第で、開回路の原因の 3分の1は、特に半田ハズレなどのPCBの欠陥が占めています。材料、処理方法、取り扱いなど、開回路を引き起こす原因は数多く存在します。ここでは、最も一般的なものを確認しておきましょう。 半田ペースト 半田ペーストが一貫して塗布されていない(塗布された 分量が異なる、または完全に塗布されていない個所がある)場合、接合部が完全に形成されません。その結果、開回路が発生したり、結合部が弱くて壊れやすくなったりすることがあります。半田ペーストにまつわるもう1つの原因は、表面全体でリフロー温度が一貫していないことです。チョコレートを電子レンジで加熱したことがある方なら、温まったところから先に溶けていくのをご覧になったことがあるでしょう。こうしたばらつきは半田リフローでも発生することがあります。一部の領域がリフロー温度に到達しなかったために完全に接着されていなければ、電気接続は確立されません。これは、ココアやフロスティングミックスの中で溶け残っているチョコレートと似ています。 半田ペーストを塗布する際にアスペクト比(ステンシルの厚さに対する開口部の幅)を間違えると、半田ペーストの沈みが発生する可能性が高くなります。特にソルダーマスクなどのレイヤーの厚さを製造業者に確認するようにしてください。 チョコレートを溶かすときのように、半田は基板全体でリフロー温度に到達する必要がある 汚染 誰も汚染されたチョコレートを食べたくはないでしょう。知らない間にそんな体験をしていないのを願うばかりですが、PCBのコンポーネントも汚染されることがあります。基板や半田ペーストのさまざまな要素が環境汚染の原因になる恐れがあるのです。明らかな原因は、化学物質の流出、空気中の粉塵や微粒子、接触する油です。 空気中の水分でさえ、腐食を加速させる原因になります。パッド表面やコンポーネントの汚染や腐食は、適切な半田の接合を阻害する可能性があります。製造業者の品質管理や社内での取り扱いについてチェックし、部品に汚染や損傷がないことを確認してください。 基板に付着した指紋は汚染の一般的な原因であり、多くの場合に腐食や半田の不良接合につながる ギャップとクラック 表面の凹凸が原因で発生したギャップによってPCBの平面性が失われると、同じコンポーネント上の異なるリード間の距離が大きく変更されます。その結果、リフロー中にリードが半田ペーストに接触できなくなります。これは、 コンポーネントのゆがみや ソルダーマスクに凹凸がある場合に最もよく見られますが、その他の熱的不整合、レイヤースタックアップに関する問題(不適切な脱ガスで発生する気泡など)、基板の物理的な取り扱いミスが原因の場合もあります。 ギャップやクラックには肉眼で確認できるほど深刻なものもありますが、特にコンポーネントの小さなパッケージなどで問題を見つけるためには、ほとんどの場合に顕微鏡やX線が必要になるでしょう。問題の解決に割り当てられている予算にもよりますが、開回路が発生している場所を特定するために電気テストを行ったり、製造業者や試験機関で最終的な根本原因の解析が行われる場合もあります。 基板の落下といった単純なことで半田が外れてしまうことがあります。チョコレートの卵のように、最初から壊れやすいものの場合はこれが顕著です。 製造中に不具合が発生すれば、たくさんの時間が浪費され、コストも高額になる恐れがあります。 記事を読む
PCB製造のためのCAD設計ガイドライン: トレース配線が半田接合に与え得る影響 PCB製造のためのCAD設計ガイドライン: トレース配線が半田接合に与え得る影響 1 min Thought Leadership 編集クレジット: Aija Lehtonen / Shutterstock.com 数週間前、かつてビッグバンドを率いていたスタン・ケントンの追悼コンサートに行ってきました。ビッグバンドジャズが大好きな理由はたくさんありますが、その1つはメンバーと楽器の構成です。通常は異なる楽器を担当する15~20人のメンバーがすべて違うパートを演奏します。そのため1人でもミスをすると、作曲家が入念にアレンジした曲のバランスが一気に崩れてしまいます。 メンバー全員が調和して演奏することの重要性について考えると、正しく製造されるPCBの重要性が頭に浮かびます。たった1つの部品が正しく半田付けされていないだけで、最終回路基板が断続的に不具合を起こしたり、まったく機能しなくなってしまったりすることがあるのです。サックスが不協和音を奏でると曲全体が台無しになってしまうのと同じように、不適切な半田付けも基板全体を損ねてしまう恐れがあります。幸いにも、製造(DFM)に関するデザインルールを活用することで、回路基板上の不適切な半田付けを避けることができます。 基板に役立つDFMのルールの1つには、おそらく驚かれることでしょう。PCBでトレースを配線する方法は、半田付けの問題に直接的な影響を及ぼしますが、DFMのルールにはこれに関するいくつかのガイドラインがあります。トレースの配線によってイモ半田やtombstoningなどの問題がどう発生するのかについて見ていきながら、今後避けるべきことを確認しましょう。 鋭角のトレース 最初にご紹介する原因は 鋭角のトレース です。厳密に言うと、これは半田付けの問題につながらないものの、PCBのDFMに関するガイドラインで指摘されている配線の問題です。 鋭角のトレースとは、90度を超える角があるトレースを意味します。こうした角度にすると、トレースが元の場所に戻ってきてしまいます。鋭角によって形成されたくさび形は、製造中に酸性化学物質を閉じ込める恐れがあります。閉じ込められた化学物質は製造の洗浄段階で除去されるとは限らず、その場合はさらにトレースが浸食されます。最終的には、トレースが切断されたり、断続的になったりすることになります。 PCBでのトレース配線 トレース幅が原因で発生する部品のTombstoning 表面実装部品の抵抗など、小さな2つのピン部品が1つのパッドの端にあると、半田付けの最中に Tombstoning が発生します。その原因は、半田のリフロー中に2つのパッド間の加熱状態がアンバランスになることです。その結果、最初に溶けた側に部品が引き寄せられてしまいます。 加熱の状態がアンバランスになる原因の1つは、2つのパッドで異なるサイズのトレースを使用することです。トレース幅が広いほど、接続されるパッドの加熱にかかる時間は長くなります。片方のパッドのトレースが細く、もう一方のパッドのトレースが太い場合は、半田リフローにアンバランスが発生し、片方のパッドが先に溶けてリフローする可能性が高くなります。 電気工学では、製造業者にとっては幅が広すぎて確実に半田付けができない電源トレースが要求されることも多々あります。PCB製造のための設計ガイドラインには、異なるサイズの部品ごとのトレースの推奨最小/最大幅が記載されていますが、それでは問題が解決しないこともあります。重要なのは、電気工学と製造の両方の 記事を読む
高速PCB設計入門: クロストークの除去方法 高速PCB設計入門: クロストークの除去方法 1 min Blog 最近、結婚披露宴で、同じテーブルに座っている男性と話をしようとしました。残念なことに、私たちの間に座っていた女性が、私の反対側に座っている人と会話を続けていました。披露宴の騒音を背景に会話することは、何より難しいことでした。私たちの間でもう1つ話し合いが行われていたために、会話が成り立ちませんでした。私たちは、クロストークしていたのです! 会話中のクロストークはとても迷惑なものですが、PCBレイアウト上のクロストークは、悲惨な結果を招く可能性があります。クロストークが修正されない場合、完成した回路基板が まったく動作しないか、あるいは断続的な問題に悩まされる可能性があります。クロストークとは何か、また、それを防ぐためにできることは何かを見てみましょう。 高速PCB設計におけるクロストークとは? クロストークは、 PCB上にあるトレース間の意図しない電磁結合 です。この結合によって、物理的に互いに接触していない場合でも、一方のトレースの信号パルスがもう一方のトレースの信号を圧倒してしまう可能性があります。これは、並列トレース間の間隔が狭い場合に、発生する可能性があります。トレースが製造目的での最小間隔を維持していたとしても、電磁目的では十分ではない場合があるのです。 互いに並行に走っている2つのトレースを考えてみてください。一方のトレースの信号の振幅がもう一方のトレースよりも大きい場合、片方のトレースに積極的に影響を与えてしまう可能性があります。そして「被害者」トレースの信号は、それ自体の信号を伝導する代わりに、攻撃者トレースの特徴を模倣し始めます。これにより、クロストークが発生します。 クロストークは通常、同じ層の上で隣り合って走る2つの並列トレース間で発生すると考えられています。しかし、隣接する層の上で隣り合って走る2つの並行トレース間でクロストークが発生する可能性は、さらに大きくなります。これは、 ブロードサイド結合と呼ばれ、2つの隣接する信号層が非常に薄いコア厚で分離されているために、発生する可能性が高くなります。この厚さは4ミル(0.1ミリメートル)になることもあり、同じ層の上にある2つのトレース間の間隔よりも小さい場合があります。 クロストークを除去するためのトレース間隔は一般的に通常のトレース間隔の必要条件よりも大きい 設計からクロストークの可能性を除去 幸運なことに皆さんは、クロストークのなすがままではありません。クロストークの可能性を最小限に抑えるように基板を設計すれば、これらの問題を回避できるのです。基板上のクロストークの可能性をなくすために役立つ設計テクニックを、いくつかご紹介します。 差動ペアと他の信号配線の間の距離を、できるだけ大きく保ちます。 経験則 は、ギャップ = トレース幅の3倍です。 クロック配線と他の信号配線との差を、できるだけ大きく保ちます。ここでも、同じギャップ = 記事を読む
回路基板レイアウトのための多層PCB設計に関するヒント 回路基板レイアウトのための多層PCB設計に関するヒント 1 min Thought Leadership 初めて何かをやるときは困難になるものです。ひな鳥は巣から外へ出されるのを喜ばないでしょうし、十代の若者は本物の初デートの前は不安で仕方ないでしょう。私も初めてのデートのときは怯えきっていました。とはいえ、その出来事は私の人生の中でとても素晴らしい時間になったので、最初の一歩を踏み出せたことに満足しています。 初めて多層PCBのレイアウトを設計する皆さんは、これとは違うけれど同じように重大な一歩を踏み出そうとされています。わからないことばかりで、ミスをしたらどうしようと不安を覚えていませんか? だとすれば心配はいりません。それは誰もが通る道ですし、役立つ情報がいくつもあります。この記事では、注意すべきライブラリー関連のいくつかの問題のほか、設計の開始に向けた一般的なガイドラインについてご紹介します。 目標を達成するためには、とにかくやってみないといけないときもあるでしょう。PCB設計者にとっては、初めての多層基板の設計がこれにあたります。設計を始めるために役立つ情報を見ていきましょう。 多層設計用のライブラリーの準備 多層PCBを設計する際は、まずCADライブラリーを確認しておきます。片面基板や両面基板の設計しか行ったことがない場合は、ライブラリーがマルチレイヤーに対応していないかもしれません。まずは次の3つを確認しておきましょう。 ネガティブプレーン層: 多層PCBのレイアウトでの電源プレーンやGNDプレーンの作成には、多くの場合に ネガ状の画像プレーン層が使用されます。一部のCADツールでは、ネガティブプレーン層のドリル穴用に、パッドやフットプリントの形状に組み込まれた クリアランスが必要になります。こうしたツールを使用する場合は、必ずパッドやフットプリントの形状に正しいネガ状のプレーンクリアランスを設定します。これを怠るとショートが発生することになります。 内層の信号層のパッド形状: デザインの中には、内層とは異なるパッド形状が外層で使用されるものもあります。たとえば、ピン1のパッドが、内層で通常使用される円形ではなく、視覚認識を考慮して四角形にされることが多々あります。ライブラリーがマルチレイヤーに設定されていない場合は、内層の信号層で必要なパッド形状を使用できない可能性があります。 製図の要素: レイアウトツールで製造図や実装図を作成する場合は、ライブラリーに保存されているさまざまなロゴ、テーブル、ビューを使用できるかもしれませんが、これらは多層基板用に変更する必要があります。 多層PCB設計用のライブラリ部品の準備 製造工場の要件を理解する 多層PCB設計には、片面基板や両面基板よりも大きな利点があります。つまり、スペースを節約して設計密度を上げられるだけでなく、シグナルインテグリティーの問題もさらに対応できます。重要なのは、設計を開始する前に製造工場と打ち合わせを行い、多層基板の製造要件を理解しておくことです。 こうした要件は、それぞれの製造工場が持つ基板技術のレベルによって変わってきます。特定のレイヤー数を超える基板に対応できない、または非常に小さなトレース幅やスペース幅の基板を製造できない工場もあるでしょう。こうした制限を超えると、製造コストが増大したり、基板が製造できなかったりする場合があります。 たとえば、ビアの種類について考えてみましょう。通常、製造工場は標準的なスルーホールビアには対応できるものの、 ベリードビア、ブラインドビア、マイクロビアを使用する場合は事前に工場に確認しておいたほうがよいでしょう。前述のとおり、トレース幅や間隔、基板層の数や構成についても相談しておくべきです。こうした要素はすべて、回路基板が製造できるかどうかに影響を及ぼすため、設計を開始する前にしっかりと把握しておく必要があります。 記事を読む