Easy, Powerful, Modern

The world’s most trusted PCB design system.

Altium Designer - 回路・基板設計ソフトウェア

Filter
0 Selected Tags by Type 0 Selected 全て Software 0 Selected 全て Clear ×
Clear
0 Selected Tags by Type
0 Selected Software
PCB設計におけるEMI制御の習得:PDNのためのデカップリング戦略 PCB設計におけるEMI制御をマスターするシリーズの第5回目へようこそ。この記事では、電力分配戦略についてさらに深く掘り下げ、PCBプロジェクトにおける電磁干渉(EMI)性能を向上させるための最適化方法について議論します。 図1 - Altium Designer®でのデカップリング戦略の例 デジタルプリント基板上でEMIを制御し、信号整合性を向上させる上での重要な要素は、効果的なデカップリング戦略を実装することです。これらのアプローチは、基板上の集積回路(IC)にクリーンで安定したエネルギー供給を保証します。 これを達成するために、PCB設計者は、高速スイッチングICのエネルギー需要を満たす強力な電力供給ネットワーク(PDN)を作成する必要があります。これにより、電源から適切な電流量をICが受け取ることを保証します。効率的かつタイムリーにエネルギーを供給するPDNを設計することは挑戦的です。これには、損失を減らし、高性能のためのインピーダンスニーズを満たすことが求められます。 データレートと信号速度が増加し続ける中、低インピーダンスのPDN(Power Delivery Network)を設計することがより重要かつ困難になっています。これは、インピーダンスプロファイルが送信される信号の周波数と密接に関連しているためです。これらの要因をバランスさせることは、PCB設計の性能を維持し、EMI(電磁干渉)の問題を最小限に抑えるために不可欠です。効果的なパワーデリバリーネットワーク(PDN)を設計する際には、デカップリングキャパシタの組み込みや、スタックアップ内でのパワープレーンや銅ポリゴンの使用など、いくつかの一般的な技術が使用されます。 しかし、広く受け入れられている方法や神話の中には、実際には効果がないだけでなく、ボードの性能に悪影響を及ぼすものもあります。 アンチレゾナンス 一つの人気のある技術は、10nFから1µFまでの異なるサイズの複数のキャパシタを使用することです。大きなキャパシタが集積回路(IC)にエネルギーを供給し、小さなキャパシタが高周波ノイズをフィルタリングするという考え方です。このアプローチは論理的に思えますが、PDNの全体的なインピーダンスを減らそうとするときに実際には逆効果になることがあります。逆効果になる理由は、実際のキャパシタは理想的に振る舞わず、高周波数で顕著になる寄生効果を持っているためです。 コンデンサは、その共振周波数までのみ容量性インピーダンスを示します。この点を超えると、コンデンサのパッケージ内の寄生成分がインピーダンスに影響を与え始め、コンデンサの振る舞いがより誘導性を帯びるようになります。全体の容量を高め、インピーダンスを低くするために異なるサイズのコンデンサを使用する試みは、重大な課題を提示することがあります。これは、各コンデンサが独自のインピーダンスプロファイルを持ち、その特有の特性によって影響を受けるためです。各コンデンサは異なる共振周波数も持っており、これらのインピーダンスプロファイルが互いに重なる状況につながります。このインピーダンスプロファイルの重なりは、特定の周波数でより高いインピーダンスピークを引き起こします。これらのピークは、コンデンサのさまざまな共振周波数間の相互作用によって発生します。 図2 - アンチレゾナンス — 異なるインピーダンスプロファイルを持つ異なるサイズのコンデンサを並列に配置する効果。出典: fresuelectronics.com
IRB_Part_I 理想的な整流ブリッジ はじめに 過去数十年にわたり、エネルギー効率の向上は電子設計、特にバッテリー駆動デバイスや電源供給装置の分野で重要な課題となっています。一般的に用いられている伝統的な電圧整流方法や逆極性保護は、大きな電力損失を伴うため、理想的とは言えず、熱要求を増加させ、設計上の制約を課しています。 この記事では、この問題に対する革新的なアプローチ、すなわちMOSFETを整流ダイオードの代わりとして使用する方法に焦点を当てます。理想的なダイオードとして使用されるこれらのトランジスタは、電力損失を大幅に削減し、複雑で高価な冷却システムの必要性をなくします。第一部では、システムを逆極性から保護するための入力回路でダイオードの代わりにMOSFETを使用することに焦点を当てます。第二部では、MOSFET制御技術のさらなる進歩が電源設計をどのように革命化し、さらに高いエネルギー効率と小さな寸法を持つシステムにつながるかを分析します。 逆極性保護への古典的なアプローチ モバイルバッテリー駆動デバイスの開発が始まって以来、設計者にとっての課題の一つは、効果的な逆極性保護を確保しつつ、電力損失を最小限に抑えることでした。逆極性保護の古典的なアプローチは、図1に示されているように、電源と直列に整流ダイオードを使用することです。これらのダイオードは、電源回路に配置され、電流が一方向にのみ流れるようにし、逆極性によるデバイスの損傷を防ぎます。最適化への第一歩として、整流ダイオードをショットキーダイオードに置き換えることで、約50%の効率向上が図られ、電圧降下が0.6-0.7Vから約0.3-0.4Vに減少しました。これは一般的に使用される方法ですが、電圧降下や電力損失といった欠点があります。低電流時に250-300mVの電圧降下を持つバッテリー用途の特殊ダイオードが開発されたにもかかわらず、古典的な解決策は依然として最適とは言えません。 図1: 古典的な逆極性保護 図1に示されたアプローチは、エネルギー効率の良い電池駆動デバイスにおいて長い間受け入れられてきました。その際、電力損失はある程度「コストに組み込まれた」とされていました。しかし、この解決策は、より多くの電力を必要とするデバイスには全く適していませんでした。そのようなデバイスの例には、CB無線、カーオーディオシステム、マルチメディアシステムなど、自己設置を目的としたさまざまな自動車用機器が含まれます。これらの場合、図2に示すように、駆動される受信機と並列に入力ダイオードを使用することが一般的でした。残念ながら、この構成では、誤った極性の場合に回路損傷を100%防ぐことはできませんでした。 図2: 高電流デバイスで使用される逆極性保護 逆極性保護にMOSFETトランジスタを使用する MOSFETトランジスタの普及と入手可能性により、図3に示すようなダイオード構成で使用されるMOSFETを用いた効果的な解決策が現れました。 図3: 逆極性保護としてのMOSFET: A) PチャネルMOSFETを使用する場合 B) NチャネルMOSFETを使用する場合 理想的なダイオード構成は、トランジスタのRDS(ON)値と負荷電流によって決定される低い電圧降下を提供します。例えば、電流が1AでRDS(ON)=10 mΩの場合、トランジスタを通過する電圧降下はわずか10
Altium Need Help?