Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
Altium Designer
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Easy, Powerful, Modern
The world’s most trusted PCB design system.
Explore Solutions
Altium Designer - 回路・基板設計ソフトウェア
All Content
Customer Stories
Filter
Clear
Tags by Type
全て
Altium Designer Projects
Altium Live
Engineering News
Guide Books
Newsletters
OnTrack
Podcasts
Videos
Webinars
Whitepapers
Thought Leadership
Popular Topics
全て
3D
Components
Electronics Design Collaboration
Design Outputs
HDI Design
High-Speed Design
Multi-Board
PCB Layout
PCB Routing
Power Integrity
RF Design
Rigid-Flex
Schematic Capture
Signal Integrity
Simulation
Manufacturing
Supply Chain
Software
全て
Altium 365
Altium Designer
Altium Enterprise Solutions (Formerly Altium Nexus)
Altium Training
Octopart
Power Analyzer (Keysight)
CircuitMaker
Altium Vault
Circuit Studio
Concord Pro
Tasking
PDN Analyzer (Legacy)
Non-Altium Products
PCB設計者のためのEMIおよびEMCコンプライアンス101
PCB設計および電子製品設計におけるEMIおよびEMCコンプライアンス要件の基本を学びましょう。
ADC/DAC用のJESD204C規格とは何ですか?
JESD204Cは、商用宇宙アプリケーションでより多く登場している高サンプルレートのRF ADCに対して、標準化されたインターフェースを提供します。
ビア基礎 その1
このブログでは、Phil Salmonyが初心者のPCB設計エンジニアにビアを理解するための良い出発点を提供します。第一部では、基本と推奨されるパラメーターに取り組みます。さらに学ぶために今すぐ読んでください。
アイダイアグラムとは?
アイダイアグラムは、高速チャンネル内の信号の動作と、反復励起に対するチャンネルの応答について知る必要があるすべての情報を提供します。
ハイブリッド・ビームフォーミングとは何ですか?
ビームフォーミングは、特定の方向に電磁エネルギーを送信するために無線システムでアンテナアレイを使用する重要な放送方法です。より多くの無線システムが、ビームフォーミングとMIMOを使用して複数のユーザー(またはターゲット)を処理する能力を拡大しています。これは既にレーダー、WiFi、および新しい高帯域幅通信システム(5G)で使用されています。システム設計者にとって、これらのシステムのアンテナアレイのレイアウト要件を理解することが重要です。これらは、RFシステムで使用されるビームフォーミング方法に関連しています。 ビームフォーミングに関しては、MIMOとの区別について混乱が生じることがあり、二つは互いに関連していないと述べられることがあります。これは特別な場合にのみ真実ですが、一般的には多ユーザーMIMO( MU-MIMO)は、複数のターゲットに変調信号を指向するためにビームフォーミングを必要とします。 この記事では、アナログとデジタルの技術を組み合わせた進んだ方法であるハイブリッドビームフォーミングの実装について見ていきます。この方法は、デジタル技術とアナログ技術の両方を組み合わせて複数のビームを作成し、さまざまな強度で複数のユーザーに到達することができます。RFイメージングシステムやレーダーシステムの場合、MIMO技術でのハイブリッドビームフォーミングは、調整可能な解像度で複数のターゲットを追跡することも可能にします。 ハイブリッドビームフォーミング概要 ハイブリッドビームフォーミングのシステム設計方法論を見る前に、アナログおよびデジタルビームフォーミング方法の簡単な概要が重要だと思います。ビームフォーミングは、アンテナからの放射分布を工学的に制御し、電磁エネルギーを特定の経路や角度に沿って指向させる技術です。 ビームフォーミングを実行するために必要な主要な構造は、二次元において規則的に配置されたアンテナ群、つまりアンテナアレイです。 位相アレイに送信される信号の相対的な位相と振幅を制御することで、放射されるビームの方向を制御できます。さらに、偏波を利用するか、アレイ内の各エミッターから一方向にのみ電磁放射を放出することで、放出可能なビームの数を倍増させることができます。 アナログビームフォーミング アナログビームフォーミングは、アンテナアレイ内の複数のアンテナに信号を送信することで動作します。各アンテナに送信される信号は、特定の時間窓によって遅延され、アレイ内の各アンテナから放出される放射に位相差を適用します。これらのアンテナアレイは、位相アレイとしてよりよく知られており、この位相差の適用は、RFシステムにおけるビームフォーミングのための歴史的に支配的な方法でした。 この方法では、単一の信号(場合によっては変調された)をアンテナアレイに入力します。この信号は、各アンテナに到達する前にトランシーバーによって位相がシフトされます。アンテナ間の間隔は、ビームの方向とサイドローブの強度を決定します。理想的なゲインの増加はlog(N)となります。ここで、Nはアレイ内のアンテナの数です。最後に、一次元に沿った強度分布(下記に示す)は、複数の発信器からの回折のケースです。 これらのアレイは、位相を調整することでスキャンすることができます。2Dアレイの場合、最大スキャン角度を垂直方向に設計できます。これは以下の要因に依存します: 放射波長(自由空間内) 放射要素のサイズ(上記の例では垂直サイズ) 放射要素間の距離(上記の例では垂直距離) 同じ考え方が水平方向にも適用されます。これで、2つの直交するスキャン方向があり、これらは放射アンテナ要素のサイズ、数、密度に応じて異なる解像度を持つことができます。RF設計のいくつかの重要な領域で重要なトピックであるため、このトピックについては次の記事でより深く見ていきます。 デジタルビームフォーミング デジタルビームフォーミングは異なるアプローチを取り、直感的ではありません。デジタルビームフォーミングでは、複数の変調信号がアンテナアレイに送信され、アレイに送信された信号の位相と振幅が組み合わされて、望ましいビームパターンを生成します。最も基本的なケースでは、単一の入力データストリーム(例えばQAM星座点)が複数のアンテナに送信され、振幅が組み合わされて望ましい放射パターンを生成します。 デジタルビームフォーミングは、実際にはプリコーディングと呼ばれるより高度なタイプの放送の特別なケースです。ビームパターンは、キャリア波と空間分布関数(Y)の積の和として定義できます。各要素から放出される信号(y)と各要素への入力信号(x)との関係は、以下に示すようにプリコーディング行列で定義されます: ここでの鍵は、上記で定義されたプリコーディング行列を決定することです。これには、望ましい放射パターン(y関数のセット)から逆算して、N放射要素の方程式のシステムを解くことが含まれます。これはソフトウェアまたはシステムコントローラー(
Customer Success Stories
SkyShips
Discover how Altium Designer and Altium 365 make designing the world's most luxurious automotive infotainment systems a breeze.
Pagination
First page
« First
Previous page
‹‹
ページ
2
現在のページ
3
ページ
4
ページ
5
ページ
6
ページ
7
Next page
››
Last page
Last »
他のコンテンツを表示する