筆者について

Happy Holden

Happy Holdenは、GENTEX Corporation (米国最大手の自動車エレクトロニクスOEM企業) を退職した人物です。世界最大のPCB製作業者、中国のホンハイ精密工業 (Foxconn) の最高技術責任者を務めた経験もあります。Foxconn入社前は、Mentor GraphicsでシニアPCBテクノロジスト、Nanya/Westwood AssociatesおよびMerix Corporationsのアドバンストテクノロジー マネージャーを歴任しています。Hewlett-Packardに28年余り勤めた後に、同社を退職しました。前職はPCB R&Dおよび製造エンジニアリング担当マネージャです。HPでは、台湾と香港でPCB設計、PCBパートナーシップ、自動化ソフトウェアの管理を担当していました。Happyは、47年以上にわたり高度なPCBテクノロジーに携わってきました。4冊の本でHDI技術に関する章を執筆しているほか、自身の著書『HDI Handbook』も出版しています (http://hdihandbook.comで電子書籍を無料公開しています)。また、最近、Clyde Coombsとの共著『McGraw-Hill's PC Handbook』第7版も完成にこぎつけました。

最新の記事

過去と未来の技術、プリントエレクトロニクス プリントエレクトロニクス:過去と未来の技術 1 min Blog PCB設計者 電気技術者 機械エンジニア PCB設計者 PCB設計者 電気技術者 電気技術者 機械エンジニア 機械エンジニア プリントエレクトロニクス(PE)は、新しく急速に成長している相互接続ビジネスです。その起源は、家電製品用のプリントフレキシブルキーボードや、派手な雑誌や文献での技術の拡大にあります。PEの皮肉な点は、この技術が恐らく第二次世界大戦中に最初に使用され、すべてのプリント回路がその起源をPEに負っていることです。 アプリケーション PEについて最もエキサイティングなことは、それが開く新しいアプリケーションと市場の全てです。図1には、現在PE開発者によって追求されている市場のうちの10つが示されています。これらの市場の大多数において、アプリケーションは短命であり、実際のPE基板は使い捨て可能です。フレキシブルキーボード、プリントグルコースセンサー、プリントRFIDタグなど、いくつかのアプリケーションは既に確立されています。一方で、プリントバッテリーと電気泳動電解質で動く化粧品用しわクリームマスクなど、このリストにさえ載っていないものもあります。 材料 材料はPE開発者にとって依然として主要な課題です。多くのPEアプリケーションがコストに敏感であるため、現在の銀の導電性インクやポリイミドフィルムの絶縁体は、そのアプリケーションにとって高すぎます。現在の絶縁体候補は表1に、導体は表2に示されています。 研究では、基板としてのナノテクノロジーがガラス、プラスチック化紙、PET、導体としては銅、グラファイト/グラフェン、カーボンナノチューブ(CNT)を支持しているようです。 表2: 印刷エレクトロニクスに適した導電材料とインク 製造プロセス 印刷エレクトロニクスは、雑誌のような低コスト印刷を想起させます。その技術は、私たちの最も古く、最も自動化された技術の一つです。しかし、図2に示されている他の印刷技術もあります。 インクの印刷方法は、その解像度(マイクロン単位)と秒速平方メートルでのスループットの機能として特徴づけられます。 印刷に関するより詳細な表は表3に示されています。それは速度、解像度、フィルムの厚さ(マイクロン単位)、および使用できるインクの粘度をリストしています。 設計ツール Altium Designer® 19にアップグレードした場合、プリントエレクトロニクスの設計が可能であることに気付いたかもしれません。これは幸運なことです。なぜなら、多くのアイデアや革新的な電子機器がプリントエレクトロニクスの基板の形を取る可能性があるからです。3Dプリンティングは現在、銀ペーストや様々な絶縁体、抵抗性および容量性インクを使用してプリントエレクトロニクスを作成することができます。近い将来、半導体(P型およびN型)インクやOLEDペーストも利用可能になるでしょう。技術がより一般的になるにつれて、他の特殊インクや紙に似た改良された基板も開発されるでしょう。 プリントエレクトロニクスに関する包括的で詳細な説明については、Joseph Fjelstadの電子書籍「Flexible Circuit Technology-Fourth 記事を読む
マイクロビア製造プロセスとHDI基板 マイクロビア製造プロセスとHDI基板 1 min Blog PCB設計者 PCB設計者 PCB設計者 初期のHDI製造 高密度相互接続プリント基板に関する取り組みが始まったのは、研究者たちがビアサイズの縮小方法を調べ始めた1980年のことです。最初に革新を起こした人物の名前は分かりませんが、初期のパイオニアには、MicroPak LaboratoriesのLarry Burgess氏(LaserViaの開発者)、TektronixのCharles Bauer博士(光誘電ビアの開発者)[1]、ContravesのWalter Schmidt博士(プラズマエッチングビアの開発者)などがいます。 初の製品版のビルドアップ基板(シーケンシャルプリント基板)は、1984年のHewlett-Packardによるレーザードリル加工FINSTRATEコンピューター基板です。1991年には、日本のIBM野洲によるSurface Laminar Circuit(SLC)[2]とスイスのDyconexによるDYCOstrate [3]が続きました。図1は、初のHewlett Packard FINSTRATE基板を表紙に載せた Hewlett-Packard Journal(1983年)です。 HPのFinstrateレーザービア レーザードリル加工のマイクロビアは、HPが意図的に開発したのものではなく、新製品の32ビットマイコンチップをリバースエンジニアリングした結果としてもたらされました。「FOCUS」と呼ばれたこのチップは、NMOS-IIIで開発された32ビットのマイクロプロセッサーで、極めて大きい電流を消費するという特性を持っていました。当初意外に思われたのは、この新しいマイクロプロセッサーが、1.6mm厚の基板にある標準0.3mm径のスルーホールビアのインダクタンスをドライブできないという点です。ドライブできたのは、20~30ナノヘンリーのインダクタンスか0.125mmのブラインドビアのみでした。次の驚きは、FR-4の通常損失(Dj=0.020)をドライブするエネルギーがないことでした。そのため、純粋なポリテトラフルオロエチレン(PTFE)が使用されました。ICの冷却要件によって、極小のブラインドビアと非常に低損失の絶縁体を備えたメタルコア基板が必要とされていたため、ダイレクトワイヤボンド集積回路(IC)を備えた銅コアのビルドアップ基板が作成されました。 図1. 一般生産された最初のマイクロビア。1984 年に生産を開始したHewlett Packard 記事を読む
高密度相互接続の導入 高密度相互接続の導入 1 min Blog エレクトロニクスの進化 エレクトロニクスは比較的新しい業界で、トランジスタが発明されて以来まだ65年しか経っていません。真空管が100年ほど前に開発されましたが、第2次世界大戦中に通信、レーダー、弾薬用ヒューズ(特に最初の原子爆弾に使用されたレーダー高度計用電子ヒューズ)によって開花し、世界最大の業界へと進化を遂げました。機能ユニットを形成するために、全ての電子部品を相互接続し、組み立てる必要があります。エレクトロニクスパッケージングは、これら相互接続の設計と製造を統合する技術です。1940年代初頭以降、エレクトロニクスパッケージングの基本的な構築プラットフォームは、プリント基板(PCB)です。このガイドブックでは、図1に示すように、極めて複雑なプリント基板、高密度相互接続 (HDI)を設計するために必要な高度設計アプローチと製造プロセスについての概要を説明します。 本章では、高密度相互接続方法の選択において説明を必要とする基本的考察、主な利点、起こり得る障害について紹介します。ここでの重要ポイントは、相互接続とコンポーネントの配線です。様々な種類のHDI基板や設計から選択することで、密度やエレクトロニクス組み立て全体のコストと性能にどのような影響が及ぶ可能性があるのかに焦点を当てています。 1950年代初頭以来、プリント基板がそれまで以上に普及し相互接続の密度や複雑性が急増しましたが、それでも過去10年には及びません。従来のプリント基板技術により、今日要求されていることは大部分を満たすことが可能ですが、高密度相互続(HDI)と呼ばれる製品グループが成長しつつあり、さらに高密度な相互接続の実現に向けて使用されています。このHDIがこのガイドブックのテーマです。 相互接続のトレンド 高密度相互接続の促進要因は、プラットフォーム、性能、部品の3つに集約されます。 プラットフォーム 携帯電話、デジタル家電、ウェアラブルコンピューターなどの製品市場が急成長している中、この全てが新しいチャンスであることを意味しています。HDIにより、エレクトロニクスのさらなる小型化、軽量化が可能になります。 性能 半導体の立ち上がり時間短縮、RFやマイクロ波通信の増加、通信エリアにおける80GHzまでの周波数に伴い、HDIによる性能向上の促進が望まれます。 部品 トランジスタの小型化や立ち上がり時間の高速化により進化し続けるシリコン技術は、小型のフットプリントにさらに多くのリードを備えるというチャレンジにつながっています。これは、単位面積当たりにより多く接続することと同じになります。 この全てのトレンドによって、より密度の高い相互接続、より小さな配線とギャップ寸法、より小さなビアや、より多くのベリードビアが要求されます。基板設計実務において必ずしも変化が伴うわけではありませんが、従来の構築では限界に達する可能性があり、HDI構築の設計のために設計ストラテジーを再検討する必要があります。 図1. エレクトロニクスは密度において1940 年代から、現在の3D 積層や 埋め込みコンポーネントを含む高密度相互接続へと進化している HDI多層プラットフォーム 記事を読む