筆者について

Happy Holden

Happy Holdenは、GENTEX Corporation (米国最大手の自動車エレクトロニクスOEM企業) を退職した人物です。世界最大のPCB製作業者、中国のホンハイ精密工業 (Foxconn) の最高技術責任者を務めた経験もあります。Foxconn入社前は、Mentor GraphicsでシニアPCBテクノロジスト、Nanya/Westwood AssociatesおよびMerix Corporationsのアドバンストテクノロジー マネージャーを歴任しています。Hewlett-Packardに28年余り勤めた後に、同社を退職しました。前職はPCB R&Dおよび製造エンジニアリング担当マネージャです。HPでは、台湾と香港でPCB設計、PCBパートナーシップ、自動化ソフトウェアの管理を担当していました。Happyは、47年以上にわたり高度なPCBテクノロジーに携わってきました。4冊の本でHDI技術に関する章を執筆しているほか、自身の著書『HDI Handbook』も出版しています (http://hdihandbook.comで電子書籍を無料公開しています)。また、最近、Clyde Coombsとの共著『McGraw-Hill's PC Handbook』第7版も完成にこぎつけました。

最新の記事

要件管理と品質機能展開 要件管理と品質機能展開 1 min Blog 「間違った場所に着くのは、悪い運転ではなく、悪い指示の結果です。市場での製品失敗は、実装ではなく、要件のエラーによるものです。」 - トーマス・L・ムスト、IBMコーポレーション会長(退任) QFDの定義:品質機能展開(QFD)[日本語の文字の直訳]は、顧客のニーズ(顧客の声[VOC])を製品やサービスの工学的特性(および適切なテスト方法)に変換するのを助ける分析方法であり、最初に表現されたときには曖昧かもしれない顧客要件の作業定義を作成するのを助けます。それは各製品やサービスの特性の優先順位付けを可能にし、製品やサービスの開発目標を設定します。 QFDの方法論は、顧客のニーズ、市場セグメント、または技術開発のニーズの観点から、製品やサービスの新しいまたは既存の特性にエンジニアが焦点を当てるのを助けるように設計されています。この技術は、チャートや行列を生み出します。 HPがその「製品定義プロセス」の基本的な部分としてQFDを使用していたとき、私はQFDを使い始めました。私は1989年にアメリカンサプライヤーズインスティテュート(ASI)によって教えられた2日間のQFDコースに参加しました(フォードによってフォードサプライヤーズインスティテュートとして設立され、ASIとして分社化されました)。この組織は現在なくなり、ASI-USAに置き換えられました。彼らはタグチメソッドとシックスシグマ設計に焦点を当てています。これは、「顧客のニーズと要求」を「技術計画」と「製品」の技術レベルに落とし込むさまざまな段階をナビゲートするのに特に有用です。QFDは、顧客主導の製品計画とロードマップにおいて不可欠なツールです。 QFDプロセス QFDには、消費者に適した製品を理解し開発することを可能にする5つの重要なポイントがあります。それは実用的であり、同時に競争上の優位性を提供する必要があります: • 顧客要求の理解 • 品質システム思考 + 心理学 + 知識/認識論 • 価値を加えるポジティブな品質の最大化 • 顧客満足のための包括的品質システム 記事を読む
PCB設計者のためのベンチマーキングの実践とプロセス PCB設計者のためのベンチマーキングの実践とプロセス 1 min Blog ベンチマーキングは、業界のリーダーと比較して企業のパフォーマンスを分析する企業全体のプロセスです。企業はこれを使用して、トップ製品のパフォーマンスをよりよく理解し、特定の技術や実践を改善または適応するための計画を立てることができます。ベンチマーキングは、単位当たりのコスト、単位当たりの生産性、単位当たりのサイクルタイムや単位当たりの欠陥など、パフォーマンスを測定するための一連の指標を使用します。これにより、新しいパフォーマンスの指標が生まれ、他者と比較されます。 ベンチマーキングのサブセットには「ティアダウン」が含まれます。多くの大学といくつかの企業が利益のためにこれを行っています。最も知られているのはPortelligent[1]です。David CareyはPortelligentの社長です(www.teardown.com)。テキサス州オースティンに拠点を置くこの会社は、ワイヤレス、モバイル、個人用エレクトロニクスに関するティアダウンレポートおよび関連業界研究を提供し、EETimes誌にティアダウン記事を執筆しています。図1に例が示されています。 ヒューレット・パッカードでは、ベンチマーキングは非常に重要な活動でした。すべての製品ラインが競合他社の製品に対してベンチマーキングを実施していました。計測器にとっては、複雑なコンピュータシステムよりもはるかに簡単でしたが、すべてのケースで詳細なプロセスは同じでした: ナレーション付きビデオ、高解像度カメラ、X線、顕微鏡によるすべてのベンチマーキング活動の文書化 業界標準を使用して、ベンチマーク広告のパフォーマンスを確認します。最大または最小のパフォーマンス指標を発見します 物理パラメータのベンチマーク:サイズ、エネルギー使用量、発熱量など。 電気パラメータのベンチマーク:電源、PCBの数、特殊な電気デバイスなど。 製品の分解をベンチマークし、D&B DFM/A指標を計算します 各PCBアセンブリをベンチマーク:はんだの種類、適合コーティング、ヒートシンク、部品数、異なる部品タイプ、ICテスト 各プリント基板をベンチマーク:サイズ、層、設計ルール、配線効率、特別機能-分散容量 各PCBからのカスタム集積回路をベンチマーク:シリコンタイプ、ゲート数、設計ルールなど。 すべてのベンチマーク指標、写真、ビデオ、および分析を、各HP組織からの多巻のレポートに収集します HPはベンチマークについて非常に謙虚でした。常により良いアイデア、または卓越したパフォーマンスを探し、学んだことを実践に移していました。ほとんどの場合、HPは他の競合他社のパフォーマンスを上回りましたが、競合他社がどれだけ近づいているかを知りたがっていました。 図1. Portelligent[1]によって実施された「飲み込み可能なリモートカメラ」のティアダウンベンチマーキング。 ベンチマーキングプロセス 作業定義は、「優れたパフォーマンスにつながる業界のベストプラクティスを探求すること」と言えます。ベンチマーキングは、企業のパフォーマンスとそれが世界で最も優れているものとどのように比較されるかを理解することに基づいて、構造的な方法で運営を変更し、優れたパフォーマンスを達成することを目指すプロセスです。成功には基本となるベンチマーキングの哲学的ステップは以下の通りです。 自社の運営を知る 記事を読む
プロジェクト管理ツール プロジェクト管理ツール 1 min Blog 大学のエンジニアリングシニアプロジェクトの一環として、プロジェクト管理技術を使用した最初の機会はガントチャートでした。その時は全て手作業でした。今日では、多くのソフトウェアパッケージがそれを提供しており、他のプロジェクト可視化技術も同様です(図1): ガントチャート パートチャート クリティカルパス分析 アフィニティ図 ギャップ分析 タイムライン 図1. プロジェクト管理に使用されるいくつかの可視化ツール [1]. あなたの仕事が何であれ、キャリアのある時点でプロジェクトを管理する必要があるか、または積極的な役割を果たすことがあります。プロジェクト管理スキルを学ぶことに費やした時間は、あなたにとって大きなリターンをもたらします。 プロジェクトを期限内に、予算内で完了させることは、あなたの最高の推薦の一つになります。そして、タスクを組織し、スケジュールし、委任する方法を知っているとき、昇進のために自分自身をより目立たせることができます。 ガントチャート 最もよく使用されるツールの一つがガントチャートであり、プロジェクトに関わるすべての活動を収集する必要があります。このプロセスの一環として、各タスクを誰が担当するか、各タスクにどのくらいの時間がかかるか、チームが直面する可能性のある問題は何かを把握します。この詳細な思考は、スケジュールが実行可能であること、適切な人が各タスクに割り当てられていること、そして開始する前に潜在的な問題に対する回避策を持っていることを確認するのに役立ちます。私の「問題解決」BLOGに記載されている活動は、プロジェクトのすべての側面を収集し、最小限の時間を見積もり、どの活動が他の活動を開始する前に完了する必要があるかを把握するのに役立ちます。 最終的に、ガントチャートを使用して、チームや上司に進捗状況を報告することができます。必要なのは、変更を示し、それが主要なタスクやクリティカルパスにどのように影響するかを示すための簡単な更新だけです。 ガントチャートを作成するプロセスには以下のステップが含まれます: ステップ1: 必須タスクと活動を特定する ガントチャートは、プロジェクトまたはプロジェクトのフェーズを完了するために必要なすべての活動を含んでいない限り、有用な情報を提供しません。したがって、最初にこれらの活動をすべてリストアップします。各タスクについて、最も早い開始日と所要時間を決定します。 ステップ2 記事を読む
IPCが高性能製品のマイクロビア信頼性に関して警告 IPCが高性能製品のマイクロビア信頼性に関して警告 1 min Engineering News 皆さんが、2019年3月6日にIPCから発表された、高プロファイルHDIボードの現場および潜在的な故障に関する警告のプレスリリースをすでに読まれたことを願っています。もし読まれていない場合、完全なプレスリリースは I-Connect 007で入手可能です。[1] 皆さんが目にされたかもしれないのは、IPCがこれから出るIPC-6012E、 リジッドプリントボードの資格認定と性能仕様に含まれる警告文です: 「過去数年間にわたり、製造後のマイクロビア故障の例が多数ありました。通常、これらの故障はリフロー中に発生しますが、室温では検出不可能(潜在的)であることが多いです。組み立てプロセスが進むにつれて、故障が現れると、それがより高価になります。製品がサービスに投入された後にまで検出されない場合、それははるかに大きなコストリスクとなり、さらに重要なことに、安全リスクをもたらす可能性があります。」 パニックにならないでください! この警告の背景を説明させてください。 ここ数年、いくつかのOEMは、最善の利用可能な受入検査およびテスト方法論でスクリーニングされたにもかかわらず、彼らの高度なHDI多層基板で潜在的な欠陥を経験しました。この欠陥は、以下で観察された故障を引き起こしました: リフロー後のインサーキットテスト 「ボックスレベル」組み立て環境のストレススクリーニング(ESS)中 保管から取り出された時 サービス中(エンドカスタマーが使用中の製品) これらのOEMによる多大な努力と調査、およびD-32熱ストレステスト方法諮問委員会との調整を経て、IPCは新しい熱ストレステスト方法(IPC-TM-650、方法2.6.27A)と熱衝撃テスト方法(IPC-TM-650、方法2.6.7.2)を発行しました。方法2.6.27では、テスト車両またはクーポンを通常のはんだペーストリフロープロファイルに従ってピーク温度230度Cまたは260度Cに達するようにし、4線式抵抗測定ユニットに接続した状態で6回の完全なリフロープロファイルを実施し、抵抗の増加が5%を超えないようにします。テストクーポン内のデイジーチェーンは、実際の回路で使用される特徴で構成する必要があります。 これにより、これらのOEMは潜在的なマイクロビアの故障を検出し、可能な欠陥の逃避から自身を守ることができました。しかし、この潜在的なHDI故障の根本原因を見つけることは困難でした。そこで、2018年初頭にIPCは、Michael Caranoの監督のもと、業界の専門家からなる選抜グループを組織し、この状況を調査することにしました。2018年後半には、このグループはIPC V-TSL-MVIA 微小ビア故障技術ソリューション小委員会と名付けられました。私はこのグループの創設メンバーです。しかし、強調しておきたいのは、 過去1年間、私たちは会合を重ね、テストデータ、断面観察、実験結果を検討しました。これが私たちが知っていることです: 欠陥は、マイクロビアとその下の銅層またはその下の別のマイクロビアとの間の金属界面での亀裂として現れます。(図1を参照) 記事を読む
HDIをめぐる競争: VeCS HDIをめぐる競争: VeCS 1 min Blog 先ごろ、ヨーロッパの非常に創造力豊かな技術者が、レイヤー間の接続について、従来のスルーホールより高密度の、これまでにない概念を提案しました。その技術者は、NEXTGin Technologies BV [1] のJoan Torne氏です。彼の技術は「VeCS(Vertical Conductive Structures)」というものです。この技術は、従来のPCB TH製造設備を使用して、0.4mmピッチのBGAまで性能を落とし、密度をHDIレベルにまで高めます。 この概念では、ペック穴開け、スロットまたはキャビティの基板内への(接続を隠すため)あるいは基板を貫通した配線を行い、金属化してメッキします。最終的な実装段階では、図1aのように、やや大きい穴を開けてレイヤー間に垂直の接続を作成します。図1bからわかるように、これらのより小規模な垂直接続は、ドリルで穴を開けた従来のスルーホールほど場所を取らないので、配線により多くのスペースを使うことができます。図1cの作成例では、1.0mmピッチのBGAの場合のTH、マイクロビア、およびVeCSを比較しています。THでは、スイングマイクロビアを使用しながらドッグボーンブレークアウトの下に2トラックを押し込み、7トラックを達成できます。7トラックのVeCSのブレークアウトは同様の密度です。ピッチを0.5mmに落としたBGAの場合、THでは、パッド内ビアの使用時1トラックを超えて配線する余地はありませんが、ブラインドビアの間には7トラックを配線できます。VeCSは、ほぼ同じ密度で、垂直接続の間に5トラックを配線できます。1.0mmのピッチでキャビティに2つの異なる配線を施した例からわかるように、ピッチがより大きい場合、VeCSブレークアウトは柔軟性があります。 図1 a. VeCSテクノロジーは、完全な穴を採用するのではなく、レイヤーを接続する垂直の トレースを配線します。b. 垂直の壁のみを使用して作られた追加の配線スペースのメリットを 3Dビューで示しています。c. ブレークアウトが1.0mmと0.5mmの2つのBGAブレークアウトの例で 2つの一般的なテクノロジー、つまりTH およびHDIとVeCSを比較しています。 図1cの配線ルールを表1に示します。 記事を読む