SMPSは、お気に入りの電子機器をスムーズに動かすために、静かに(しかし電気的にはノイジーに)活動しているデバイスの一つです。彼らは背景で静かに役割を果たしていますが、彼らがいなければボードは動作しません。電力をたくさん消費するアプリケーションのDC-DCコンバータ設計の一環として、安定した電力供給を高効率で負荷に提供するためには、コンポーネントの選択が非常に重要です。
数多くのDC-DCコンバータトポロジーの中で、バックコンバータは入力電圧を下げるために、高効率の電力変換を提供するために多くの用途で使用されます。これらの電力コンバータのコンポーネント選択に関する一般的な質問は、バックコンバータ用のインダクタをどのように選択するかです。バックコンバータ内のインダクタや他のコンポーネントを扱う際の目標は、電力損失を熱に限定し、同時に電流リップルを最小限に抑えることです。
以下に示すのは、SMPS用の基本的なバックコンバータトポロジーです。この図では、MOSFETからの出力がPWM信号で駆動され、ユーザーが選択したデューティサイクルでMOSFETをオン/オフします。インダクタとキャパシタは、PWM信号が切り替わる際に負荷に安定した電流を供給するために重要な役割を果たします。最終的に、PWM信号のデューティサイクルは、ユーザーが負荷に供給される出力電圧を制御するための主要な機能です。
インダクタはPWM信号と同じレートで常に切り替わるため、出力に送られる電流にわずかなリップルを重ねる役割を担います。インダクタとキャパシタはLフィルタを形成し、これは基本的に2次のバンドパスフィルタです。十分に大きくESRが低いキャパシタを使用すると、キャパシタは低インピーダンスを提供し、リップルを構成する高周波成分は大部分が取り除かれます。
インダクタの適切な値は、設計が許容できるリップル電流と、PWM信号に使用する予定のデューティサイクルに依存します。以下の方程式は、ダイオードの順方向電圧降下とMOSFETを通過するON状態の電圧降下の関数としての出力電圧を示しています。これらの電圧を考慮した後、出力電圧は次のようになります:
いくつかの数学をスキップして、重要な結果に直接移ります。まず、インダクタンスとPWM周波数はリップル電圧に反比例します。次に、リップルはPWMデューティサイクルの二次関数でもあります。バックコンバーターのリップル電流は次のようになります:
PWM信号の立ち上がり時間はどちらの方程式にも現れません。しかし、立ち上がり時間は、コンバーターから発生するノイズおよび損失(詳細は以下を参照)を決定する上で重要な役割を果たします。重要な結果は以下のようにまとめることができます:
インダクタは、出力電流上のリップルを生成し、同時に抑制する役割を担っていますが、これは上記のガイドラインを使用して設計で設定できる設計目標とすることができます。しかし、インダクタが制御できないスイッチングレギュレータのいくつかの重要な側面があります:
これらのノイズ源は、PWM信号の周波数とエッジレートに依存します。デューティサイクルを変更せずにバックコンバータをより高いスイッチング周波数で動作させると、通常、MOSFET内の熱としてより多くの電力を失うことになります。より速いエッジレートを使用するトレードオフは、下流回路に誘導されるより多くの高周波ノイズと、スキン効果によるより多くの熱損失のリスクです。これらの点については、この記事でさらに読むことができます。
Altium Designer®の回路図設計とPCBレイアウト機能を使用すると、次の電源用のボードを作成し、設計を製造の準備ができます。また、製造業者が直接提供する回路図シンボルと3Dモデルを含む、膨大な範囲のコンポーネントにアクセスできます。これらの機能はすべて、生産性を維持し、次の製品を迅速に構築するのに役立つ単一の設計環境でアクセス可能です。
今すぐ無料トライアルをダウンロードして、業界最高のレイアウト、シミュレーション、および生産計画ツールについてさらに詳しく学ぶことができます。今日、Altiumの専門家に相談して、詳細を学びましょう。