Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
製造
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
製造
製造
リソースライブラリでは、PCB設計とプリント基板製造の詳細を紹介しています。
How Design Decisions Affect PCB Fabrication
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェア
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
GovCloud
Octopart
Requirements & Systems Portal
SiliconExpert
Z2Data
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
Americas
EMEA
ANZ
APAC
回路図の電気的ルールチェック
1 min
Blog
はじめに このホワイトペーパーは、PCB設計のプロセスにおいてあまりに重要視されていない機能について解説するものであり、最初から適切な方法で設計を進めるための情報が提供されています。多くの設計者や企業はPCBのレイアウトを正しく設計することに取り組んでおり、最近では周辺の機械に関する状況をリアルタイムでチェックしています。 しかし、既に回路図にエラーが含まれる場合は、どうでしょう?通常、人による設計のレビューが行われますが、設計の複雑さが増し納期が短くなる中、ミスが入り込むことが、ますます普通になっています。プロ向けのPCB設計ツールのエレクトロニックルールチェック(ERC)機能は、回路図のミスを見つけ取り除くのに役立ちます。いくつかの基本ルール、および設計の基となる「文法」をチェックします。 ERC(電気的ルールチェック)はなぜ有効なのか この質問に答えるのは非常に簡単です。つまり、設計を対象としたチェックを行うルールを設定するだけで問題が特定され、設計の早い段階でそうした問題を修正できるようになります。そのうえ、ERCの設定と実行にはわずかな時間しかかかりません。実のところ、手動でチェックを行う時間のほんの何分の1かで完了します。そのため、再チェックではなく設計に時間を使えるようになります。 ERCの活用方法の1つは、どの要素がどのように接続を許可されるのかを定義する接続マトリクスと回路図設計の全体的な「文法」という2つの領域で、チェックを分割して実行することです(※図1を参照)。 「文法」領域では、バス、コンポーネント、ドキュメント、ハーネス、ネット、パラメーターなどの使用に関する、さまざま設定をカバーします。 回路図の「文法」 「文法」の違反の例としてはフローティングネットラベルが挙げられきます。ただし、こうした問題は必ずしも明白であるわけではありません。特にインポートされた設計ではこの傾向が顕著になります。 (※続きはPDFをダウンロードしてください) 今すぐ Altium Designerの無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください!
記事を読む
ウェアラブル機器の課題に対応する
1 min
Whitepapers
ウェアラブル電子機器には「大ヒット商品」となる資格があることに、疑問の余地はありません。ウェアラブル機器の市場は2016年は300億ドルであると予測されており、2026年には1,500億ドルまで成長するでしょう。リジッドフレキシブル基板の技術が無いと、これらの機器のほとんどは、ま ったく設計できません。つまり、エンジニアやPCB設計者は、ウェアラブルと「折り畳み型」の世界で設計、テスト、製造の専門家になる必要があります。 最も身近な製品は、おそらくスマートフォンとリンクしているスマートウォッチや、同じく手首に着用するフィットネストラッカーでしょう。しかし、これらの民生品の他に、ウェアラブル機器は、医療機器や軍事用途に大いに進出しています。今では、リジッドPCBを組み込むことがほとんど不可能なスマー ト衣服も現れつつあります。このホワイトペーパーでは、ウェアラブル機器のユニークな点は何か、また、フレキシブルやリジッドフレキシブル基板の設計に何が必要かについて考察します。 機能が複雑になるとPCBも複雑になる ウェアラブル機器は、小さくて、着ている人の注意をほとんど引かない必要があるのは、言うまでもありません。医療用ウェアラブル機器の場合、ユー ザーは普通、他の人の注意も引きたくないと思います。少し前まで、「ウェアラブル医療機器」はかなり大きく、多くの場合、ベルトマウントやショルダ ーストラップを必要としていました。 今日、ウェアラブル機器は、さまざまな場所にあり、腕時計タイプのフィットネストラッカーが、主要ウェアラブル製品の1 つになっています。これらの機器は、センサーを使用して、 複数のパラメーターを監視し、フィットネス関連のパラメーターを計算しています。しかし、それらは、このように高度化されている一方で非常に小さく、フレキシブル基板の技術を必要とします。スマートウォッチには、設計スペースがもう少しありますが、機能が複雑になるにつれて、このスペースもすぐに使い果たしてしまいます。 ウェアラブル医療機器は、体の特定の部分をモニターするために着用する、小さく目立たない「パッチ」へと進化しました。それらは、完全に自立型であり、図1に示すように、 小さな場所に電極、接着剤、充電池、知能を備えています。 リジッドフレキシブル基板の設計 何らかの方法で人体に取り付けるウェアラブル機器は、フレキシブル回路および非常に高密度のレイアウトを要求します。それだけでなく、多くの場合、基板の形は円形や楕円形であり、さらに変わった形の場合さえあります。設計者の観点から、これらのプロジェクトには、巧みな配置と配線が必要です。このように小さく高密度の基板では、リジッドフレキシブル設計に最適化されたPCB設計ツールを使えば、変わった形状を非常に簡単に扱うことができます。 今日設計されるPCBの大半は、基本的に、回路を接続するためのリジッド基板です。しかし、PCB設計者にとって、ウェアラブル機器には、リジッド基板にはない問題点がいくつかあります。(※続きはPDFをダウンロードしてください) 今すぐ Altium Designerの無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください!
記事を読む
PCB設計に影響を及ぼすDFMの課題トップ10
1 min
Whitepapers
はじめに PCBの設計者は、さまざまな要件を満たしながら期待に応えなければなりません。検討の対象となる領域は、電気、機能、機械に及びます。また、最高品質のPCBをできるだけ低コストで期日までに完成させる必要があります。こうした要件への対応にあたっては、DFM(製造を考慮した 設計)も考慮に入れる必要があります。DFMはPCBの設計プロセスの重要な要素であり、適切に対応されていない場合は高い頻度で問題が発生します。PCB設計で遭遇し得るDFMの課題トップ10と、それらに対処するための代替案を見ていきましょう。 1. IPCベースのフットプリントの配置 PCBのコンポーネント向けの導体パッドは、確実に半田付けできるかどうかについて判断するための重要な要素です。IPCフットプリントの設計では、PCBのコンポーネントを後の製造の工程で誤りなく半田付けすることができます。 2. コンポーネントパッドの均一な接続 0402、0201、またはそれ以下のサイズのSMDコンポーネントについては、パッドの接続を均一にすることが重要です。これによって、ツームストーニング(コンポーネントがリフロー中に基板から部分的に、または完全に外れてしまうこと)を回避できます。また、確実な半田付けを行うには、BGAパッドとも均一な接続を維持することが重要です。これを保証するためのテストは複雑で高額になり、多くの場合にX線の使用が伴います。(※続きはPDFをダウンロードしてください) 今すぐ Altium Designerの無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください!
記事を読む
EMC向上のための6層PCBスタックアップの設計
1 min
Blog
6層のPCBは、高いネット数と小さいサイズを持つ様々なアプリケーションにとって、経済的で人気のあるスタックアップです。大きなボードは、4層のスタックアップで十分機能することがあり、信号層を犠牲にしてボードの各側間の隔離を確保できます。適切な6層スタックアップを使用すると、異なる層間のEMIを抑制し、高いネット数を持つファインピッチコンポーネントを収容できます。しかし、4層または8層のスタックアップを使用する方が理にかなっている場合もあり、この判断をするためには、ボード内のプレーン層の機能を理解することが役立ちます。 電源、グラウンド、信号プレーンはいくつ必要ですか? この質問への答えは非常に重要であり、実際にはボードのアプリケーションに大きく依存します。限られたスペースで密度の高いボードをルーティングしているが、すべてが低速またはDCの場合、2つのプレーン層と4つの信号層で十分なことがよくあります。しかし、その場合、創造的なレイアウトとルーティングで層数を4層に減らすことがよくあります。 EMIへの感受性を大幅に減らす必要がある場合、代替のスタックアップを使用し、より多くの電源/グラウンド層と少ない信号層を選択するべきです。これがデジタルボードまたは混合信号ボードである場合、信号を平面層に対して配置し、密接に配置された電源/グラウンド平面ペアを使用することで、EMI問題を引き起こすことなくボード全体に自由にルーティングするための柔軟性を得ることができます。 シールド缶のような不格好な解決策を必要とせずに、ボードの周りにさらにグラウンドを追加することも、大きな遮蔽効果をもたらすことができます。 デジタル信号とアナログ信号を混合する場合、高周波と低周波の信号を混合する場合、またはこれらのすべての組み合わせの場合でも、6層PCBスタックアップの創造的な使用が可能です。ある時点で、より大きなボードやスタック内の層を増やす(またはその両方!)必要があるかもしれません。6層PCBスタックアップのための多くの信号/平面層の組み合わせがありますが、以下にいくつかの一般的なものを示します。 6層PCBスタックアップの例 これを念頭に置いて、いくつかの6層PCBスタックアップの例を見てみましょう: 信号+電源/グランド/2信号層/グランド/信号+電源 この6層PCBスタックアップの例は、内部層の低速トレースを外層のトレースから遮蔽する人気のあるエントリーレベルのオプションです。また、固体平面への密接な結合もあります。信号は、直交している限り、低周波数/遅い切り替え速度で、または内部層を通してルーティングできます。私は、互いおよび内層の低速/周波数トレースからそれらを遮蔽するために、高速デジタルおよび/またはアナログ信号を外層にルーティングするでしょう。以下に例を示します。 これについては、アナログとデジタルを内層で混在させないでください。ただし、ボードの異なる領域にそれらを分離できる場合を除きます。しかし、デジタルとアナログのセクション間に分離が必要なその種の状況では、内部平面を持つ4層スタックアップで何とかなるかもしれませんし、創造的なレイアウト/ルーティングを行うか、または4層で好まれるSIG+PWR/GND/GND/SIG+PWRの配置を使用できます( ガイドラインについてはこちらを参照)。 このタイプのスタックアップでは、 レイヤー2を電源プレーンレイヤーにしないでください、また、L3+L4で平行にブロードサイド結合ペアを試みないでください。代わりに、信号レイヤー上でPWRをルーティングします。これに伴う主な問題は、電源とグラウンドプレーンレイヤー間の インタープレーン容量の欠如と、L1からL5への高インダクタンスのリターンパスです。これらのプレーンレイヤーが分離されているため、L1上の信号の予測不可能なリターンパスを補償するために、より多くのデキャップとグラウンドリターンビアが必要になります。この理由から、これらのボードは、正確なリターンパスの予測と追跡を必要としない電力またはDCシステムでのみ使用すべきでしょう。 信号/GND/PWR/GND/信号/GND この6層PCBスタックアップの例は、高速信号に多くのデカップリングを提供する必要があるが、信号用に3層分の密度が必要でない基板にとって良い非対称スタックアップです。一つの例は、高速(L1)と低速(L5)の信号の混在で、これらは互いに隔離され、密接に配置されたPWR+GNDプレーンペアが 高速電力整合性をサポートするための高いデカップリングを提供します。内部信号層は、2つのグラウンドプレーンの間に封入されるため、表面信号層から遮蔽されます。また、固体導体が効果的な遮蔽を提供するため、内部信号層がEMIの干渉を受けるのを抑制するのにも役立ちます。電源とグラウンドプレーンは、高速デジタルデバイスのための効果的なデカップリングを提供するために、おそらく密接に配置されるでしょう。 このスタックアップの主な問題点は、下層のグラウンドを切り取って部品を配置するスペースを作らない限り、上層にのみ簡単に部品を配置できることです。つまり、基本的には片面基板を構築していることになります。これは製造にとって高価な提案であり、内部信号層へのビアを配置するために多くのドリリングが必要になります。これは、4層または8層のPCBスタックアップの利点を強調しています。8層スタックアップでは、内部層に隣接する電源/グラウンドの同様の配置を作成しながら、内部ルーティングや下層の部品/ルーティングも収容できます。 信号/グラウンド/電源/信号/グラウンド/信号
記事を読む
IPCが高性能製品のマイクロビア信頼性に関して警告
1 min
Engineering News
皆さんが、2019年3月6日にIPCから発表された、高プロファイルHDIボードの現場および潜在的な故障に関する警告のプレスリリースをすでに読まれたことを願っています。もし読まれていない場合、完全なプレスリリースは I-Connect 007で入手可能です。[1] 皆さんが目にされたかもしれないのは、IPCがこれから出るIPC-6012E、 リジッドプリントボードの資格認定と性能仕様に含まれる警告文です: 「過去数年間にわたり、製造後のマイクロビア故障の例が多数ありました。通常、これらの故障はリフロー中に発生しますが、室温では検出不可能(潜在的)であることが多いです。組み立てプロセスが進むにつれて、故障が現れると、それがより高価になります。製品がサービスに投入された後にまで検出されない場合、それははるかに大きなコストリスクとなり、さらに重要なことに、安全リスクをもたらす可能性があります。」 パニックにならないでください! この警告の背景を説明させてください。 ここ数年、いくつかのOEMは、最善の利用可能な受入検査およびテスト方法論でスクリーニングされたにもかかわらず、彼らの高度なHDI多層基板で潜在的な欠陥を経験しました。この欠陥は、以下で観察された故障を引き起こしました: リフロー後のインサーキットテスト 「ボックスレベル」組み立て環境のストレススクリーニング(ESS)中 保管から取り出された時 サービス中(エンドカスタマーが使用中の製品) これらのOEMによる多大な努力と調査、およびD-32熱ストレステスト方法諮問委員会との調整を経て、IPCは新しい熱ストレステスト方法(IPC-TM-650、方法2.6.27A)と熱衝撃テスト方法(IPC-TM-650、方法2.6.7.2)を発行しました。方法2.6.27では、テスト車両またはクーポンを通常のはんだペーストリフロープロファイルに従ってピーク温度230度Cまたは260度Cに達するようにし、4線式抵抗測定ユニットに接続した状態で6回の完全なリフロープロファイルを実施し、抵抗の増加が5%を超えないようにします。テストクーポン内のデイジーチェーンは、実際の回路で使用される特徴で構成する必要があります。 これにより、これらのOEMは潜在的なマイクロビアの故障を検出し、可能な欠陥の逃避から自身を守ることができました。しかし、この潜在的なHDI故障の根本原因を見つけることは困難でした。そこで、2018年初頭にIPCは、Michael Caranoの監督のもと、業界の専門家からなる選抜グループを組織し、この状況を調査することにしました。2018年後半には、このグループはIPC V-TSL-MVIA 微小ビア故障技術ソリューション小委員会と名付けられました。私はこのグループの創設メンバーです。しかし、強調しておきたいのは、 過去1年間、私たちは会合を重ね、テストデータ、断面観察、実験結果を検討しました。これが私たちが知っていることです: 欠陥は、マイクロビアとその下の銅層またはその下の別のマイクロビアとの間の金属界面での亀裂として現れます。(図1を参照)
記事を読む
プリントエレクトロニクス:過去と未来の技術
1 min
Blog
PCB設計者
電気技術者
機械エンジニア
プリントエレクトロニクス(PE)は、新しく急速に成長している相互接続ビジネスです。その起源は、家電製品用のプリントフレキシブルキーボードや、派手な雑誌や文献での技術の拡大にあります。PEの皮肉な点は、この技術が恐らく第二次世界大戦中に最初に使用され、すべてのプリント回路がその起源をPEに負っていることです。 アプリケーション PEについて最もエキサイティングなことは、それが開く新しいアプリケーションと市場の全てです。図1には、現在PE開発者によって追求されている市場のうちの10つが示されています。これらの市場の大多数において、アプリケーションは短命であり、実際のPE基板は使い捨て可能です。フレキシブルキーボード、プリントグルコースセンサー、プリントRFIDタグなど、いくつかのアプリケーションは既に確立されています。一方で、プリントバッテリーと電気泳動電解質で動く化粧品用しわクリームマスクなど、このリストにさえ載っていないものもあります。 材料 材料はPE開発者にとって依然として主要な課題です。多くのPEアプリケーションがコストに敏感であるため、現在の銀の導電性インクやポリイミドフィルムの絶縁体は、そのアプリケーションにとって高すぎます。現在の絶縁体候補は表1に、導体は表2に示されています。 研究では、基板としてのナノテクノロジーがガラス、プラスチック化紙、PET、導体としては銅、グラファイト/グラフェン、カーボンナノチューブ(CNT)を支持しているようです。 表2: 印刷エレクトロニクスに適した導電材料とインク 製造プロセス 印刷エレクトロニクスは、雑誌のような低コスト印刷を想起させます。その技術は、私たちの最も古く、最も自動化された技術の一つです。しかし、図2に示されている他の印刷技術もあります。 インクの印刷方法は、その解像度(マイクロン単位)と秒速平方メートルでのスループットの機能として特徴づけられます。 印刷に関するより詳細な表は表3に示されています。それは速度、解像度、フィルムの厚さ(マイクロン単位)、および使用できるインクの粘度をリストしています。 設計ツール Altium Designer
®
19にアップグレードした場合、プリントエレクトロニクスの設計が可能であることに気付いたかもしれません。これは幸運なことです。なぜなら、多くのアイデアや革新的な電子機器がプリントエレクトロニクスの基板の形を取る可能性があるからです。3Dプリンティングは現在、銀ペーストや様々な絶縁体、抵抗性および容量性インクを使用してプリントエレクトロニクスを作成することができます。近い将来、半導体(P型およびN型)インクやOLEDペーストも利用可能になるでしょう。技術がより一般的になるにつれて、他の特殊インクや紙に似た改良された基板も開発されるでしょう。 プリントエレクトロニクスに関する包括的で詳細な説明については、Joseph Fjelstadの電子書籍「Flexible Circuit Technology-Fourth
記事を読む
製造の準備:PCBパネル化ソフトウェア
1 min
Thought Leadership
製造業に従事している方や新製品を生産する予定がある方にとって、生産性が重要なキーワードです。産業革命以来、人時あたりの製品数を増やすことに焦点が当てられており、PCBも例外ではありません。新製品を市場に出す際、必要以上に注文に費用をかける理由は何でしょうか? PCB製造プロセスの生産性を向上させる方法の一つは、適切なパネライゼーションスキームを使用することです。適切なPCB設計ソフトウェアを持っていれば、パネライゼーションは比較的簡単なプロセスとなり、ボードごとのコストを削減できます。外部のCADプログラムをパネライゼーションに使用したり、デフォルトの長方形の配置を使用する代わりに、PCB製造に特化した優れたCADパッケージを使用することで、各パネルから最大限の効果を得ることができます。 パネライゼーションによる製造準備 パネライゼーションは、標準サイズの単一パネル上に複数のボードを配列するプロセスです。これは、1枚の大きなPCB基板上にボードのコピーを作成するようなものと考えてください。単一のパネルを組み立ておよび分離機械を通すことは、おおよそ固定費となり、製造業者は通常、パネルごとのPCB価格を見積もります。目標は、工具の制約を満たしながら、単一のパネル上に可能な限り多くのボードを配置することです。 製造、分離、および組み立てのためにパネライズされたボードを準備する方法の一つとして、パネライズされたPCBとPCB自体の両方に フィデューシャルマーカーを配置する必要があります。これらのマーカーはパターン認識マーカーとも呼ばれ、ピックアンドプレース機械がボードの向きを確認し、ボード上の異なる位置間の距離を測定するため、または指定された許容範囲を満たさないボードを拒否するために使用されます。 フィデューシャルマーカーは一般的に、ボードの対角線上の角とパネルの対角線上の角に配置する必要があります。測定のためです。3つ目のフィデューシャルマーカーは、向きを確認するために別の角に配置できます。これにより、ピックアンドプレース機械やその他の組み立て機械がパネルが正しい向きでロードされたかどうかを判断でき、自動組み立て機械はこれらのマーカーを使用して、コンポーネントを正しい位置と向きで取り付けることができます。 標準化された工具装置は、各パネルにサイズ制約を設けることもでき、ボード間の間隔を制約します。パネルの配置を計画したら、分離プロセスを考慮に入れ、ボード間に分離ツールのためのスペースを含める必要があります。ボードに使用される正確な工具処理は、主にその厚さと基板材料に依存します。 非常に薄い基板を扱っていて、大きな機械的ストレスに耐えられない場合、レーザーカッターやCNCマシンのルータービットを使用して、各パネルを簡単に切り出すことができます。パネルが非常に薄くて広い場合、ルータービットは通常、基板の中心付近のストレスを減らすために遅く動作し、実際にはスループットを減少させることがあります。 基板が厚くなったり、基板用の材料が頑丈なものを使用する場合、鋸を使用した手動または自動の切断プロセスでパネルから基板を分離することができます。一般的な方法の一つは、パネル内の各基板の周りにV字型の溝を配置し、ピザカッターに似た鋸を使用して、これらの溝に沿って切断することで基板を分離することです。 基板を分離する方法に関わらず、基板にフィデューシャルマーカーを簡単に配置し、工具用のスペースを提供できるPCB設計ソフトウェアパッケージが必要になります。パネル化の計画を立てる際には、基板がどのように分離され、パネル上で必要なクリアランスがどの程度かを確認するために、製造業者に連絡することが最善です。 ECADソフトウェアでのパネル化 一部のソフトウェアパッケージでは、CAD、パネライゼーション、 製造業者向け納品物、および設計検証ツールを異なるプログラムやモジュールに分けています。これにより、基板を一つのプログラムで設計し、別のプログラムでパネライズし、そして設計プログラムで基準マークや工具仕様を定義する必要があります。時間の無駄とはこのことです... 設計ソフトウェアが 部品表やパネライゼーション機能と別々の場合、プログラム間の切り替えに時間がかかります。設計をプログラム間で移動すると、レイアウトがパネライゼーションソフトウェアにインポートされる際にエラーが発生する可能性があります。さらに悪いことに、パネルを手動で描画する必要がある場合、正しい詳細を含めないとパネルの向きに曖昧さが残ります。 曲がった基板を扱っている場合や、同じパネルに異なる基板を配置したい場合、パネルを手動で描画して最適化するのにさらに時間がかかります。パネライゼーションユーティリティとPCBソフトウェア間でデータをやり取りすると、互換性のエラーが発生しやすくなり、時間の無駄になります。代わりに、これらのツールが組み込まれたPCB設計パッケージが必要です。パネライゼーション設計ツールでは、基板がどのように配置され、製造業者によってどのように分離されるかを指定できるようにする必要があります。 唯一、設計、製造データ生成、シミュレーション、およびサプライチェーン管理ツールを一つのパッケージに統合したPCB設計ソフトウェアは、 Altium Designer
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
29
現在のページ
30
ページ
31
ページ
32
ページ
33
ページ
34
Next page
››
Last page
Last »