Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
製造
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
製造
製造
リソースライブラリでは、PCB設計とプリント基板製造の詳細を紹介しています。
How Design Decisions Affect PCB Fabrication
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェア
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
GovCloud
Octopart
Requirements & Systems Portal
SiliconExpert
Z2Data
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
Americas
EMEA
ANZ
APAC
PCB設計のレシピに従う: PCBの製造図
1 min
Thought Leadership
数年前、私は妻の誕生日にクレームブリュレを作りました。妻は呆然としていました。なにしろ、その時の私にできた料理といえば、ゆで卵と焦げたトーストくらいだったからです。実際に作ってみる前にはいくらか時間をかけて、わかりやすい作り方が書かれたレシピを手に入れました。そのレシピを手にひとつひとつの工程を進み、その日のヒーローになるために調理しました。 後になって考えてみると、失敗しても失うものはそれほどありませんでした。がっかりはするかもしれませんが、クレームブリュレがなくてもお祝いはできるのですから。PCB製造の世界ではそうはいかず、はるかに多くの危険が潜んでいます。不適切な基板はコストを跳ね上げるどころか、設計者の職まで危険にさらされる恐れがあります。基板が自分の手から離れたら、後は製造業者を信じるしかありません。無条件に信用したくないのなら、製造図に明確な指示を記載して、製造を成功させるようにしなければなりません。 不完全な製造図は、製造プロセスを遅らせるだけでなく、基板の製造を取り消す原因にもなります。基本的な材料がないと料理が始まらないように、製造図もに基本的な材料が必要です。設計している基板に独自の要素を追加するのはその後です。優秀な料理人が調理道具を巧みに使って絶品を作るように、基板の設計でCADツールを使って作業を進める方法をご紹介します。手遅れになることがないよう、オーブンを開けて、料理がどうなっているのか確かめてみましょう。 製造ラインから実装に送られるPCB PCBの実装図:基本的な材料 クレームブリュレの基本的な材料は卵、クリーム、砂糖だけですが、製造図に含める基本的な指示も必要なものだけに減らすことができます。製造図を使って直接伝える必要のある最も重要な指示は下記のとおりです。 基板外形: 製造業者が製造する必要のある、長穴やカットアウトなどの要素を含むPCBの外形です。ただし、これは基板の実装図ではないため、長穴やカットアウトを使用する機械的な要素を含める必要はありません。 ドリル穴の位置: 基板のすべてのドリル穴は、独自のシンボルを使って、基板外形の中に示す必要があります。製造業者は設計者が送ったドリル用ファイルを使って実際の穴の位置を確認するものの、ここではドリルシンボルを参照用に含めます。 ドリル図: 「ドリルスケジュール」とも呼ばれるこの図では、穴の完成サイズと数量にそれぞれのドリルシンボルを追加します。これにより、製造業者は製造図に含まれる穴のサイズを簡単に把握できるようになります。 寸法線: 製造図には寸法線を追加し、基板の全体的な長さと幅を示したほうがよいでしょう。また、すべての長穴、カットアウト、その他の固有の基板外形の位置やサイズについても寸法線を含めます。 レイヤースタックアップの図: これは実際の レイヤースタックアップが表示される基板の側面図です。ここでは、基板のレイヤーの構成や幅のほか、レイヤー間のプリプレグやコアを詳細に示すためにポインターを使用します。 製造の注記: これは、製造図に文章で記載する実際の製造指示です。ここには、基本的な製造指示、業界標準や仕様の参照、特別な要素の位置などを記載します。 製造の識別情報
記事を読む
部品表在庫管理とオンライン部品リクエスト文書システムの利点
1 min
Thought Leadership
ある時、頭金として使うために家族の一員にお金を借りようと頼んだことがあります。彼の返答には私が理解できない反提案が含まれていたので、そのままにしてしまいました。残念ながら、彼の返答を理解しなかったことで、最初に求めていたものよりもさらに良い機会を逃してしまいました。 そのやり取りは、明確なコミュニケーションの重要性を示す例として私の心に残っています。PCB設計の世界では、特に新しい部品をリクエストする際には、明確なコミュニケーションが不可欠です。しかし、部品リクエストの文書が適切に配布されないために、これらのリクエストが混乱したり、遅れたり、あるいは失われたりすることがあります。エンジニアが利用可能でない部品や、承認されたベンダーリストにないサプライヤーからの部品をリクエストすることもあります。これらの問題はすべて、コストのかかる再設計を引き起こし、製造を遅らせる可能性があります。幸いなことに、部品リクエストの問題を解決するのに役立つ 部品表在庫管理ツールがあります。 新しい部品リクエストを提出する従来の方法 プリント基板が設計されて以来、設計チームによる部品の要求は常にありました。PCB設計が進むにつれて、部品は回路図に追加され、回路を完成させるために接続されます。設計にこれまで使用されていない新しい部品が必要な場合、通常以下の手順が取られます: エンジニアリングチームは、必要な部品を見つけるために部品ベンダーを調査します。 部品が見つかったら、エンジニアリングはスプレッドシート、Eメール、または紙の文書の形で購買およびCAD部門に新しい部品のリクエストを提出します。 購買は部品のコストと入手可能性を調査し、それに企業の部品番号を割り当てます。 CAD部門は、エンジニアリングによって収集された部品データを使用して、回路図とレイアウトのための予備のライブラリ部品を開発します。 入手可能性が確認されると、承認された部品リクエストがエンジニアリングに返送されます。 ライブラリ部品、回路図、およびレイアウトはすべて、承認された部品情報で更新されます。 このプロセスには多くのステップがあり、そのいずれかが部品リクエストに問題を引き起こす可能性があります。 従来の部品リクエストシステムの問題点 従来の部品リクエストシステムに関連する問題点 従来の部品リクエスト方法には、いくつかの問題が生じる可能性があります。これらの問題の中で最悪の2つは、未承認のベンダーから新しい部品をリクエストすること、および購入できない部品をリクエストすることです。 正確な部品を見つけるために、エンジニアリングは会社で承認されたベンダーとして資格を持たない部品供給業者を検討することがあります。要求された部品が設計にとって完璧な解決策であっても、部品ベンダー自体がエンジニアリングには明らかでないビジネス上の理由で受け入れられない可能性があります。また、承認されたベンダーによって新しい部品が提供されている場合でも、まだ使用できないか、または製造ニーズをサポートするのに必要な数量で利用できない場合があります。 新しいベンダーを認定するか、利用できない部品の代替品を見つけるには時間がかかります。設計が進行して新しい代替部品を収容するための再設計が設計スケジュールに深刻な影響を与える段階に達しているかもしれません。 もう1つの問題は、部品リクエスト文書の配布に失敗することが発生することです。これは次のような理由で起こる可能性があります: 1) 紙の部品リクエストは、うっかり失くされたり破壊されたりすることがあります。「宿題を犬が食べた」という古い言い訳を笑っていたものですが、紛失した書類の現実は笑えるものではありません。
記事を読む
DraftsmanでのPCBA図面作成によるPCB設計意図の伝達
1 min
Blog
多くの企業にとって、製品開発中に見落とされがちな重要なステップが図面作成です。時には、関与する詳細のレベルが高いために図面の作成に時間がかかりすぎることもあります。他の場合、企業は外部の契約業者や製造業者に図面の作成を依頼することもあります。また、自社で図面を作成している電子機器企業は、通常、機械設計用のアプリケーションを使用しており、これは時間がかかり、エラーが発生しやすい作業です。 図面作成の手作業部分を効率化する方法がなければ、図面作成は時間がかかるプロセスであり、追加のコストがかかりますが、製造業者は無欠陥のPCBA製造を保証するために標準的なPCB製造および組み立て図面を必要とします。昨年の古い機械設計用アプリケーションを使い続ける代わりに、企業はより賢明で、コスト効果の高いソリューションを利用すべきです。 図面はPCB設計の意図を示す 市場に大量にリリースされる革新的な製品を開発する企業は、どこでも自社の製品を生産できるようにする必要があります。ある製造業者の能力制約が、複数の製造業者との契約を余儀なくさせるかもしれませんが、生産に関わる全員が同じボードを同じ品質と収率で製造できるようにするための何らかの方法が必要です。 これがあなたの図面が活躍する場所です:複数の製造業者から同じ製品を生産できるようにするために、製造パートナーが知る必要があるすべてを示します。サービスビューロで働いている場合、同じ考え方がお客様にも適用されます。提供する図面には、お客様がどこでも、実質的にどの製造業者とも製品を生産できるように必要な情報をすべて含めるべきです。これは聞こえるよりも複雑かもしれませんが、標準的なPCB製造プロセスを通じて製品を進めるために必要な特定の情報を含めることが求められます。 下の図面は、設計を正確に製造し、基本仕様を満たす裸のボードを生産するために必要なすべての情報を示しています。ここでは、図面に含まれる重要な情報がいくつかあります: 性能と資格要件をリストした製造ノート スロットと穴が明確に見えるボードのアウトラインの寸法図 異なるドリル穴サイズを表すシンボルが完備されたドリル図 会社、著者/アーティスト、プロジェクト、製品情報を含む完全なタイトルブロック レイヤー情報をリストしたスタックアップ図 含まれる可能性のあるその他の情報には、 インピーダンス表、外部文書で述べられた要件を含むノート、 テスト要件、製造能力に関するさらなる許容差などがあります。 PCB製造および組立てノートは、見積もりフォームに記入できる内容よりもはるかに詳細な情報をリストアップする機会を提供します。これらのノートを図面に直接配置することと同様に、デバイス設計要件、機能要件、製造および評価要件など、デバイスを完全に理解するために必要なすべてをリストアップした設計要件文書を準備することが一般的です。 要件文書の作成はまだ完全に手動ですが、最高のPCB設計ソフトウェアを使用すると、文書化プロセスの一部を迅速に自動化できる部分があります。それは図面の作成です。自動化された図面ツールを使用すると、設計に必要な製造および組立て要件を完備したPCBAのドラフトを迅速に作成することができます。 シンプルで実用的な統合ソリューション ECADネットワークが文書化で不足している部分は、 Draftsman
®
での図面作成が、ECADアプリケーションから製図ソフトウェアへの情報の手動転送の必要性を排除することで補います。Draftsmanテクノロジーは、このプロセスを内蔵の自動化でシームレスにするだけでなく、将来の設計に利用できるPCBの技術図面の作成も可能にします。全体として、これにより設計意図が開発プロセスの早い段階で伝えられ、製品の製造および組立てが容易になります。Draftsmanの図面エディタは、これらのプロセスに以下のような利点をもたらします: 製品設計の理解しやすいグラフィカルな表現を提供する
記事を読む
多層PCB設計: 高電圧PCB向けの基板の製造
1 min
Thought Leadership
編集クレジット: Anton_Ivanov / Shutterstock.com オリジナル版の『 シュレック』は、私が大好きな映画の1つです。『 スター・ウォーズ』といったもう少し歴史のある作品と同じように、この映画に出てくる名言はマニアである友人や兄弟姉妹の間でお気に入りの言葉になっています。特に有名なのは、自分のような怪物は複雑な生き物だということをシュレックがドンキーに説明しているシーンでしょう。「玉ねぎにはいくつも層がある。怪物にもいくつも層がある。わかるかい?玉ねぎにも怪物にもたくさんの層があるんだ」ここでドンキーが指摘したのは、誰もが玉ねぎを好きだとは限らないものの、パフェを嫌いな人はいないということでした。人が層になっているものをどのくらい好むかという点で、私の友人はPCB設計のラボで、多層PCBがパフェと玉ねぎの中間にあると言いました。 その複雑性を踏まえると、私はよく多層PCBがパフェよりも玉ねぎに近いと感じます。多層PCBに苦手意識を持たないようにするのに役立つことの1つは、製造の方法やその工程で設計にどのような影響があるのかについて理解することです。高電圧設計の場合は、製造による影響について理解しておくことがさらに重要になります。 多層基板の製造方法とは PCB設計を製造業者に送った後は、最終的に完成基板にまとめて搭載されるそれぞれの層が個別に製造されます。銅箔トレースは撮像、エッチングされてからラミネート加工されます。これらの層は、非常に強力な液圧プレスで絶縁材を使って一緒に圧迫され、基板の最上層と最下層が加工されます。 中間層は、樹脂を浸透させたファイバーガラスである「 プリプレグ(prepreg)」(pre-impregnatedの短縮語)を使って製造されます。プリプレグに含まれる樹脂の割合は、液圧プレスによる基板の圧迫に影響を及ぼします。プリプレグの分量と粘性は用途に応じた最適なものにし、製造中に不具合が発生しないようにしなければなりません。これは、ケーキの最後の層のフロスティングとスポンジを用意することに似ています。 プリプレグに含まれる接着剤の割合が多過ぎると、圧迫時に層と層の間からはみ出してしまいます。おいしいフロスティングなら問題ないかもしれませんが、PCBの製造の場合はご想像どおり、厄介でまずいことになります。プリプレグが多過ぎて基板が厚くなると、電圧保護の計算がすべて台無しになってしまうのです。 PCB に含まれる樹脂はケーキのフロスティングのようなもの。分量を間違えると厄介なことになる。 樹脂について 一般的なPCBの場合、製造業者は低コストでボリュームのあるプリプレグ材を使用する確率が高くなりますが、こうした材料は樹脂の含有量が低く、ガラスが多く含まれます(ガラスは樹脂の浸透に影響を及ぼします)。高電圧の用途向けの場合は、 樹脂の割合が高いプリプレグを使って、層のプレス後に隙間が残らないようにしなければなりません。隙間によって絶縁層の効果的な誘電性が変化すると、やはり電圧保護の計画が台無しになってしまいます。 ここでの賢い方法は、1080や2113といった高電圧用のプリプレグを選択することです。こうしたプリプレグは、樹脂の含有量が高くて層が薄くなるため、隙間や微泡が残るのを防止してすべての層の密度を高くすることができます。層状になった食べ物で言うと、バクラヴァのようなフレーク状の層は、高電圧下での性能に 大きな影響を与えます。これらのプリプレグには含まれるガラスも少ないため、樹脂の浸透もよくなります。コストは上がるものの、その分だけ高電圧下での保護状態も向上します。
記事を読む
最新の製造設備でPCBに基準マークを配置する必要はあるか
1 min
Blog
PCB設計者
設計における基準マークの配置忘れは、ある種の「ホラー」です。 10年前、筆者はホラー映画鑑賞をやめました。若いときは単純に恐怖感を心から楽しみましたが、技術者としてのキャリアを開始するとともに、興味はアクションやSFに移りました。これはおそらく、仕事上の単純なミスが製造後の悲惨な悪夢につながったホラーストーリーを相応に経験していたからだと思います。 筆者が電子機器設計の仕事を始めた頃、 スルーホールコンポーネント が非常に一般的で、 表面実装コンポーネント を目にすることはめったにありませんでした。マイクロコントローラー(MCU)のQFP(Quad Flat Package)が一般的になると、古い プラスチック リードチップキャリア(PLCC) のフットプリントから移行せざるをえませんでした。これは、QFPがPCBに直接実装できる一方、PLCCは追加ソケットを必要としたためです。チップ製造業者が、QFPや類似のパッケージを支持し、PLCCパッケージのMCUの製造を中止するのはもう時間の問題だと思いました。 PCB実装業者から、200枚の生産用基板のMCUを実装できないとの電子メールを受け取ったときに、悪夢が始まりました。スルーホール コンポーネントであるPLCCソケットに慣れていたため、筆者はPCBに基準マークを配置することに思い至りませんでした。基準マークを配置しないということは、狭いピッチでQFPにパッケージされたMCUを全て手作業で実装しなければならないことを意味しました。 その結果、かなりの割合の基板が不良品となり、不完全な手作業によるはんだ付けの欠陥を修正するためにとてつもない時間を費やすことになりました。それ以来、業者から、基準マークなしでも製造できる機械にアップグレードしたとの連絡を受けていても、筆者は設計に必ず基準マークを使用するようにしています。 基準マークを省略すると、ひどい基板ができあがる可能性があります。 基準マークの概要とその製造時の役割 PCB設計において、 基準マーク はpick
記事を読む
PCB製造でのシルクスクリーンに関する問題の発生を防止するには
1 min
Blog
1996年のオリンピックをご覧になっていれば、最後まで奮闘したケリー・ストラグ選手のことを覚えていらっしゃる方もいるでしょう。ストラグ選手は足首を痛めた状態で最後となる2回目の跳馬を跳び、アメリカチームに金メダルをもたらしました。彼女が教えてくれたのは、最後までやり抜くことの大切さでしょう。とはいえ、私たちはそれが回路基板設計となると、プロジェクトの最後には気が緩んで油断してしまいがちです。デザインを製造にリリースする前の最後の作業の1つは、基板のシルクスクリーンとデジグネータを調整することです。しかし、この手順が他の設計作業ほど真剣にとらえられていないことは多々あります。その結果、製造業者によってデザインが却下され、修正するよう送り返されてくるケースもあります。今回は、PCBのシルクスクリーンに潜在するいくつかの問題とそれらを回避する方法について見ていきましょう。 ケリー・ストラグ選手のように最後までやり抜く PCBのシルクスクリーンに潜在する問題とは 皆さんのなかには、「問題など起こりようがない」とお考えの方がいらっしゃるかもしれませんが、デザインをリリースする前にシルクスクリーンの最終調整をしなかったことが原因で発生する問題をいくつかご紹介しましょう。 コンポーネントが正しく表示されていない : 意図するコンポーネントがシルクスクリーンで正確に表示されていないと、デバッグや修正を担当する基板技術者の混乱を招く可能性があります。たとえば、関連するコンポーネントが正しく表示されていない形状、誤ったピンの数、誤ったピンに表示されている極性指示がこれにあたります。キャップのプラス側をチェックしたときに、極性指示が逆になっていることを知った技術者がどのような不安を感じるのかについては、皆さんも想像がつくでしょう。 テキストが判読できない : シルクスクリーンのテキストが判読できない場合、基板技術者はデジグネータの確認に余計な時間を費やさなければなりません。多くの場合、これは小さすぎて判読できないフォントサイズや誤った線幅を使用していることが原因です。線幅が小さすぎると基板にうまくスクリーン印刷ができず、逆に線幅が大きすぎると膨張してしまい、同じく判読不能になります。 デジグネータが誤ったコンポーネントに配置されている : デジグネータが誤ったコンポーネントに配置されている場合があります。これは、コンポーネントを移動したもののデジグネータが移動されていない場合に発生したか、設計者側の誤りの可能性があります。いずれにしても、基板のテストを実施する基板技術者は、回路図にあるコンポーネントと一致しないものをチェックすることになります。 実装するコンポーネントでデジグネータが覆われている : 実装する部品の下に配置されているデジグネータは、これまでに嫌というほど見てきました。密集したデザインでは避けられない場合があるものの、なんとかして阻止しなければなりません。デジグネータが見えない状態で「C143」を必死に探している基板技術者の姿を想像してみてください。 シルクスクリーンのインクが金属を覆っている、または穴に流入している : シルクスクリーンのインク が表面実装ピンやメッキされたスルーホールなどの露出金属
記事を読む
設計ドキュメントの主要なPCB設計要素の捕捉
1 min
Blog
ハードウェア製造業スタートアップ企業 / エレクトロニクスプロトタイパー
設計ドキュメント作成のうち最も重要でありながら、多くの場合に回避される要素の1つは、正式な設計ドキュメントです。設計を完了し、製造、実装、検証ドキュメントを生成しただけで、業務が完了したとみなしてしまうことは珍しくありません。システム仕様、設計の意図、設計プロセス、仕様の追跡可能性を正しく捕捉することは、時間を要し、骨の折れる作業ですが、極めて重要です。設計ドキュメントでは、システムの設計のあらゆる側面を捕捉し、関連するすべての設計情報へ簡単にアクセスできる必要があります。しかし、製造や実装の図面に含まれない設計の詳細をどのように捕捉すればいいのでしょうか? 設計の全ての側面を設計ドキュメントに表現する あらゆる設計において、設計ドキュメントの作成は計画段階で開始し、仕様から始める必要があります。設計ドキュメントの対象である設計が、より大きなシステムのサブシステムである場合、システム全体の仕様を提示してから、システム全体からそのサブシステムまで、システムがどのように分割されるかの仕様を記載する必要があります。設計プロセス全体を通して、設計ドキュメントは生きたドキュメントとなり、設計プロセスにおいて、それぞれの部分の回路が設計され、実装されていきます。 設計の仕様段階は、時間や予算の制約のために多くの場合見逃されたり、回避されたりする部分です。そこで、仕様を正しく開発するため、前もって時間とリソースを割り当てておくことが必要です。起動環境での作業に従事したことがあるなら、おそらくは仕様が不明瞭、またはまったく存在しない設計プロジェクトに直面したことがあり、この手法が危険であることを理解しているでしょう。仕様が存在しない、または固定されていない場合、その仕様に合わせて設計を行おうとすると、終わりのない開発のやり直しにはまり込むことになります。仕様の目的は、何を達成すべきかを明確にし、設計が完成したことを検証できるようにすることです。「もっと良いものを作れるはずだ」という考えから、プロジェクトが予算を超過し、スケジュールが遅延することは珍しくありません。このような結果が起きるのは、最初の時点で仕様を明確に決定しておかないことが主な原因です。 設計ドキュメントにおいて対象としているデバイスの仕様は、より大きなシステムのサブシステムであることも珍しくありません。システム全体の仕様が提示され、その後で設計対象のデバイスに適用される部分のシステムの仕様が、論理的で整った形式で示されます。 仕様には次の内容を含める必要があります(これで全部とは限りません)。 機能(サブシステムがどのような動作を目的としているか) 動作環境(温度、湿度など) 他のサブシステムとのインターフェイス パワーバジェット 利用可能な電源電圧 機械的な制約: サイズ、重量、形状 衝撃や振動に関する要件 熱(利用できる冷却、放射熱の放出制約など) EMIの放射、伝導、および感受性 信頼性 仕様ステージ以後にも、設計フェーズが完了したことを判定するため、関連する設計情報を捕捉する必要のある他の分野が存在します。正式な設計ドキュメントの作成には時間を要しますが、回路図、製造図、実装図の範囲を超えて、設計の全ての側面を捕捉するためには不可欠なことです。 正式な設計ドキュメントに、その他に何を含めるべきかについては、無料のホワイトペーパー 「設計ドキュメントによる設計の捕捉」
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
33
現在のページ
34
ページ
35
ページ
36
ページ
37
ページ
38
Next page
››
Last page
Last »