製造

リソースライブラリでは、PCB設計とプリント基板製造の詳細を紹介しています。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
現代のPCB製造データ形式を持つ重要性 現代のPCB製造データ形式を持つことの重要性 1 min Blog 最近、Altiumのブログでニューハンプシャーにある最新のeSmart Factoryについて投稿しました。最先端の機械とプロセスを使用して、非常に細かいジオメトリを持つほぼ完璧な複雑な多層基板とHDI基板を数日で製造でき、人の手を借りたり触れたりすることなく、環境に害を与えるものを一切排出しない—ゼロ排出物です。 スマートファクトリーのためのデジタル化 この技術は、今後数年間にわたってプリント回路が製造される方法を形作るでしょう。‘オールデジタルスマートファクトリー’であることの利点は、同時に潜在的な弱点でもあります。特定のレシピの設計図を読んだり、機械を調整したりする作業員がいません!これは「オールデジタルスマートファクトリー」であり、すべてに デジタルレシピが必要です。ここで、IPC-2581デジタルデザイン通信プログラムが登場します。図1に示すように、IPC-2581プログラム委員会は、設計ツールがデジタルXMLファイルを出力し、「未来の工場」またはスマートファクトリーを駆動できるデジタルスレッドを作成しています。 図1: スマートファクトリーのための設計特性のデジタル化。(出典: 2017 IPC APEXプレゼンテーション) 人気のあるインテリジェントPCBデザイン出力フォーマット エレクトロニクス製造におけるスマート工場のデジタル化を実現するために、製造データのエクスポートを統合および標準化し、ファイルパッケージのサイズを削減するためのいくつかの取り組みが既に行われています。PCBデザイナーにとって最も 人気のある出力フォーマットは、次の2つです: Gerber X2 ODB++ Gerber X2はRS-274-Xに対するわずかな改善に過ぎませんが、ODB++は真にインテリジェントなデータフォーマットにかなり近いものです。それでも、約70-80%の PCB出力ファイルパッケージはRS-274-Xフォーマットであり、PCBを構築および組み立てるために必要な情報を完全に伝達するためには追加のファイルが必要です。 2020年には、UcamcoによってGerber 記事を読む
インピーダンス配線をコントロールするためのプリプレグとコア使用の比較 インピーダンス配線をコントロールするためのプリプレグとコア使用の比較 1 min Thought Leadership 適切な層の材料で、インピーダンスをコントロールした設計をしていますか ? PCB設計のより細かい点について最初に学び始めたとき、コアは特殊な材料であるという印象を受けました。これは必ずしも真実ではありません。設計者には、要求に最も適したコア/プリプレグの配置を選択する自由があります。インピーダンス配線の制御に関して言えば、特に高周波数では、分離絶縁体としてコア層とプリプレグ層のいずれを使用するかが重要な問題になります。 それでは、どちらの層がインピーダンス配線のコントロールに最適なのでしょうか? 基板のインピーダンスをより細かく制御するには、ガラス繊維の影響を考えるに先立ち、より高い、比誘電率の均一性が必要です。また、製造後の基板の比誘電率の一貫性と予測可能性も高い必要があります。ここでは、プリプレグ層とコア層の位置を決定する際に、レイヤー構成に適した材料をどこで慎重に購入する必要があるかを説明します。 プリプレグvsコアにおけるインピーダンス コントロール コアは、厚くて硬いガラス繊維の層で、通常は層数の少ない基板の中央に配置されます。私が見た限りでは、「コア」という語を使用すると、新人設計者は文字どおり、「あらゆる設計は、基板の中心にコアがあり、その周りに他の層が組み込まれているに違いない」と受け止めます。私は、特に層数が増加するにつれて、これは必要条件ではないことを後から学びました。実際には、コアとプリプレグの層が交互にあり、中央の層は必ずしもコア層ではありません。重要なのは、コア層が配置されている場所に関係なく、レイヤー構成は対称であるという点です。 プリプレグは、製造の時点では完全には硬化していない材料で、コア層間の接着剤を形成します。最近かかわった、 板厚が標準的な1.57mmの基板を扱ったプロジェクトでは、外層にRogersのコア、内層にFR4プリプレグ/コアを使用しましたが、このタイプのハイブリッド多層板 (FR4にPTFEを積層) はよく使用されます。材料によってコストが異なるので、コストは結果を左右する要因です。したがって、低損失の積層板は、一般に高速/高周波信号を伝送する層のために予約されています。 通常、比誘電率と厚さの両方に関して、コア層はプリプレグ層よりも高い再現性を持っています。これは、コア材料がすでに銅箔と結合されているからです。これに対し、プリプレグの製造業者は原材料の比誘電率の範囲しか指定できず、アセンブリ後の比誘電率を指定していません。そのような状況が、相互接続上の信号によって参照される実効比誘電率を決定します。特殊な低損失プリプレグ積層板の中には、比誘電率が非常に幅広いバリエーション (50%以上) を持つものがあります。 シングルPly CoreかダブルPly Coreか? ガラス繊維の織り方が異なるコア材料の中には、比誘電率が大きく異なるものがあります。これは、特定のコア材料がシングルplyかダブルplyかによっても異なります。106コアと106/1080コアが完璧な例です。これらの材料の比誘電率は約10%変動しますが、既存のデザインを使って、シングルply coreとダブルply 記事を読む
インピーダンスに影響を与える伝送線路の特性 - 隠された特徴 インピーダンスに影響を与える伝送線路の特性 - 隠された特徴 1 min Blog こちらと他のいくつかの記事では、 Altiumリソースセクションで、伝送線路インピーダンスについて様々な観点から取り上げています。私は以前、 シミュレーション技術とインピーダンスの進化という記事で伝送線路インピーダンスについて取り上げましたが、インピーダンスに関して提供できる情報は尽きたかのように思われるかもしれません。しかし、実際には、いくつかの特徴は触れられただけでした。この記事では、それらの特徴とその効果、および伝送線路インピーダンスを制御するために使用される基本方程式について詳しく説明します。 インピーダンスまたは不一致の原因 以前の記事で議論されたように、表面層上の伝送線路のインピーダンスを決定する4つの主要な変数には以下が含まれます: それが通過する平面上のトレースの高さ。 トレースの幅。 トレースの厚さ。 トレースを支えるために使用される絶縁材料。 上記の4つの変数が分かれば、PCB内のどの特徴がインピーダンスに関連する影響を持つかを判断することができます。これらの特徴には以下が含まれます: 同一層内でのトレース幅の変化。これは一般にトレースネッキングと呼ばれます。 トレースネッキングは、トレースがSMD(表面実装デバイス)やトレースの幅よりも小さい直径のスルーホールなど、狭いパッドに近づくとトレース幅が減少することを指します。 トレース厚さの変化。 平面上の高さの変化。 伝送線路に沿ったスタブ。 伝送線路に沿った負荷。 コネクタの遷移。 不適切な終端。 終端のない状態。 大きな電力平面の不連続。 記事を読む
ヒートシンクからのEMIとその対策方法 コンデンサのヒートシンクからのEMIとその対策方法 1 min Thought Leadership 適切なヒートシンクを選択することで、システムを冷却し、EMIを防ぐことができます. 明らかではないかもしれませんが、また、ほとんどの設計者がチェックするとは思わないかもしれませんが、ヒートシンクはスイッチング要素に接続されている場合、EMIを発生させることがあります。これは電源設計における一般的な問題であり、特にヒートシンクが高電流を引き出し、高周波でスイッチングするコンポーネントと接触する場合に発生します。ヒートシンクからのEMIを減らすには、導電部分と放射部分のバランスを取る必要があり、これを行うためのいくつかの簡単な設計手順があります。 ヒートシンクと寄生容量からのEMI ほとんどの設計者が基板上のコンポーネント用に ヒートシンクを選択することを考えるとき、彼らはおそらく単にメーカーの推奨に従うだけです。彼らはメーカーが推奨するサイズと同様のヒートシンクを使用するかもしれませんが、熱伝導率が高い材料で作られたものを選ぶかもしれません。設計者の中には、 アクティブ冷却対策、例えば冷却ファン、または(極端な場合には)液体冷却や蒸発冷却を選択する人もいます。これらの対策は、特にメーカーが必要なヒートシンクと組み立てガイドラインを提供している場合、標準化されたコンポーネントを使用する際に適切です。 CPUの速度が1 GHzを超えて以来、ヒートシンクからの放射および導電EMIがより目立つようになりましたが、これは電力電子およびコンピュータシステム業界外の多くの設計者には気づかれなかった可能性があります。今日では、一般的にヒートシンクは単に接地されるべきであり、これがEMIの問題を解決するとされています。実際には、これだけでは問題を完全に解決するわけではなく、問題を解決するには寄生容量を管理する必要があります。 EMIの両方のタイプは、スイッチングICと近くのヒートシンクとの間の寄生容量結合によって生じます。スイッチングトランジスタを持つ集積回路の構造を調べると、チップパッケージと任意の 熱伝導ペーストやインターフェース材料がキャパシタの絶縁領域を形成しているのがすぐにわかります。この寄生容量がヒートシンクに共通モード電流を誘導する責任があります。 MOSFETに垂直ヒートシンクが接着された例。 次に何が起こるかは、ヒートシンクが接地されているかどうかによります。ヒートシンクが接地されていない場合、ヒートシンクとチップは容量結合電流の地面への容易な戻り道がないため、放射されたEMIの源として機能します。電流はヒートシンク内の複数の電磁共鳴を励起し、高電流と強い放射を持つヒートシンク内の一連の領域を作り出します。これは、ヒートシンクが通常デフォルトで接地される理由の一つです。しかし、ヒートシンクに誘導された強い電流が地面に向けて偏向されると、 グラウンドリターンパスに応じて、近くの回路で伝導EMIの源を作り出す可能性があります。 なぜヒートシンクからの放射または伝導EMIがより頻繁に対処されないのでしょうか?その理由はいくつかあります。通常、ヒートシンクからのEMIが顕著になるのは以下の二つの場合です: スイッチング時の高電流。 これは、大きなスイッチングレギュレータで大型トランジスタがスイッチングする電力電子工学における一つの問題です。より短い時間でより高い電圧にスイッチングすると、ヒートシンク内のより大きな変位電流が生成されます。 プロセッサの高速スイッチング。 より高速に動作するプロセッサは、ヒートシンク内に大きな変位電流を簡単に生成することができます。また、ヒートシンク内の高周波共鳴を容易に励起することもできます。 どちらの場合も、高電圧/電流のスイッチング電源を設計する際には、ヒートシンクへの容量結合を考慮する必要があります。他のアプリケーションには、低電圧で動作するデバイスのGPUやCPUのためのVRMが含まれます。 ヒートシンクからの伝導および放射EMIのバランス 記事を読む
製造能力係数の計算 製造能力係数の計算 1 min Blog 長年にわたり、「どうやって基板の製造が可能なファブリケーターかを知ることができますか?」とよく聞かれます。まず、IPC PCQR2レポートを要求するようにと答えます。それが利用できない場合、またはそのプロセスを経る時間やお金がない場合は、製造能力係数を計算することが「次善の策」となります。 製造収率 製造能力係数(FCC)は、ファブリケーターの電気テストデータ、 初回合格率(FPY)から計算されます。これは、修理や再作業を行う前の生産収率です。PCBの収率データは通常、正規分布していません。それはガンマ分布です。これは常識です。なぜなら、通常収率が高い基板でも、生産の失敗がある場合があり、その結果の平均値と標準偏差は低い収率データを反映するからです。しかし、「 + 」の面では、収率が100%を超えることはありません。したがって、通常の平均値と標準偏差は、製造能力係数の計算において無視するいくつかの誤差を導入します。ガンマ分布の平均を計算して挿入する能力がある場合は、ぜひそれを行ってください。 製造能力 これらの要因を単一の指標である複雑性指数(CI)に集約する簡単なアルゴリズムが利用可能です。これは、私の前のブログ(10月)の方程式1で与えられています。[1] 初回合格率の計算 初回合格率の方程式は、ワイブル確率故障方程式から導出されます。 [2]この方程式は、欠陥密度によるASICの予測に通常使用される方程式のより一般的な形式であり、私の前のブログ(10月)の方程式2として提供されています。 収率計算ステップ 製造能力係数を計算するには、以下の6つのステップがあります: 1. 現在稼働中の様々なサイズと層を持つ10から15のボードの設計属性を収集します。(表1) 2. これらの選択されたボードの初回合格率情報を、少なくとも10回分収集します。(表2) 3. ボードの複雑性指数と平均収率を計算します。 記事を読む
Gerberファイルで見つけることができる、よくあるPCB設計の3つの間違い Gerberファイルで見つけることができる、よくあるPCB設計のミス3選 1 min Thought Leadership 一般的なPCB設計のミスを見つけることで、製造までのプロセスを早めることができます 私は大学院に入るまで優秀な学生ではありませんでした。その時点で、私は人生の他のどの分野よりも宿題に力を入れ始めました。確かに、私の社交生活はなくなりましたが、すぐに模範的な学生になり、振り返ることはありませんでした。 学校にいる間に宿題をする必要があるように、新しい設計を製造業者に送る前に宿題をするべきです。新しい設計ではいくつかの一般的なエラーが発生する可能性がありますが、製造に出す前にレイアウトとガーバーファイルを入念にチェックすることで、これらの問題を避けることができます。これらの点をチェックすることで、製造業者からの入札拒否の反応を避け、組み立て後の歩留まりを向上させることができます。 製造前の一般的なPCB設計ミス 請求書に値する製造業者は、製造と組み立ての実行を開始する前にいくつかの重要な点をチェックする時間を取ります: コンポーネントの入手可能性、コスト、および 廃止 回路図、レイアウト、ガーバーファイル、部品表、およびエクセロンファイル間の一致 製造プロセスへの適合 最初のポイントは、 サプライチェーンを調査して、予算内で部品を調達できることを確認することを要求します。廃止予定の部品をチェックすることで、製品が最も長く関連性を持つ寿命を持つことを保証します。この宿題を自分で行い、回路図とレイアウトを作成する前に行うことで、再設計のリスクを減らし、全体の生産時間を短縮します。 二番目のポイントは、設計文書間の直接比較に関わります。Gerberファイルとドリルファイルの両方にすべてのドリル穴が表示されていることを確認したいです。また、回路図/レイアウトのすべての部品が部品表に表示されていることも確認するべきです。一部のCADプログラムは、ボードの各レイヤーごとに個別のファイルを作成しますが、設計者はボードの製造に必要なすべてのファイルが準備され、正確であることを確認する責任があります。 第三のポイントは、実際には第二のポイントに関連しています。 ガーバーファイルとエクセロンファイルをメーカーが検査するのは、設計が彼らのプロセスでフルスケールで生産できるかを確認するためです。レイアウトやガーバーファイルで素晴らしく見える機能も、完成品では想像した通りに(そもそも見えない場合もあります)現れないかもしれません。設計者として、メーカーやメーカーの代表者に彼らの能力と要件について相談するべきです。 ガーバーファイルとレイアウトを慎重に検査することで見つけることができる一般的なPCB設計のミスはこちらです。 重なっているまたは配置が間違っているドリルヒット スロットを作成しようとして2つのドリル穴を重ねるのは災害のもとです。ドリル中にビットが折れる可能性が非常に高いです。代わりに、エクセロンドリルテーブルのコードを使用して、この特定の機能をスロットとして定義できます。同様に、ビア用の誤ったドリルスポットが表面または内層のトレースやパッドに当たると、銅の特徴を破壊します。 これらの両方の間違いは、DFMチェック中にPCBレイアウトのすべてのレイヤーをオンにすることで見つけることができます。比較的シンプルな設計の場合、製造業者は機能に影響を与えることがないため、ビアを簡単に移動させることができます。より複雑な設計では、製造業者は(またはそうあるべきですが)多くの複雑な変更が必要になる可能性があるため、ドリルホールやビアを移動させることをためらうでしょう。設計は変更のためにあなたに戻され、ボードが生産に送られる前に。 このPCBレイアウトでリターン電流の経路をどのように決定しますか? パッド周りのはんだマスククリアランス 記事を読む
実装業者向け出力の生成 実装業者向け出力の生成 2 min Blog 先日、比較的経験の浅い技術者から、実装業者が問題なく作業できるためにはどのようなファイルを送ればよいか、また、実装業者が設計について不明点を明らかにするための質問の数を減らすにはどうすればよいか、という質問を受けました。その技術者は、大手の企業で専門職として数年間働いており、自分がかかわっている製品の出力を生成する責任もなければ、その出力を目にすることもなく、実装の経験といえば、趣味や大学のプロジェクトを通じて自分で組み立てたことしかありませんでした。 実装業者に適切なファイルを送らなかったり、設計者の意図を十分に明示した出力を提供しなかったりすれば、実装業者との理解の相違を解消するために作業が行きつ戻りつして遅れが生じる可能性があります。この記事で紹介する方法は必ずしも業界のベストプラクティスではありません。筆者自身が、外注の実装業者や製造業者にファイルを送った際の不明点を減らすために何年もかけて改善してきたプロセスです。カナダ、ヨーロッパ、中国の実装業者と一緒に働いている筆者の場合、このプロセスがうまく機能していることは既に明らかです。 この記事で例として取り上げるプロジェクトを直接操作しながら説明を読み進めたい場合は、私が GitHubで使用している基板を入手できます。古い基板ですが、実例を示すという目的には最適です。このプロジェクトを基にして独自の基板を作成し、デジグネータの扱いを練習する場合は、フットプリント用の Altium Designerのデータベースライブラリの古いV1バージョンをダウンロードしてください。 デジグネータ 基板にデジグネータを使用したがる設計者もいれば、使用する必要性を感じない設計者もいます。筆者個人は、自分のシルクスクリーンにはデジグネータをまったく追加しません。デジグネータの使用について意見がある方は、この記事にコメントする形で理由をお知らせください。自分の経験では、非常に狭い空間にコンポーネントが配置された状態でデジグネータを追加すると、たいていは混乱するので、部品を探す場合は実装図を参照してもらうようにします。回路基板にコンポーネントを配置する際は、すべてのデジグネータを新しいデジグネータメカニカルレイヤーに移し、デジグネータを部品の中央に配置して、必ずデジグネータがコンポーネント自体よりも小さくなるようにします。 これは、アセンブリ用出力を生成する際、実際に役に立ちます。各コンポーネントの位置を正確に示すこのメカニカルレイヤーから、非常に明快な図面を作成できるからです。 このために筆者が考えたプロセスは、 [Panels](Altium Designerの右下)≫ [PCBFilters] からアクセスできる [PCB Filter] タブを使用する方法です。フィルターテキストは、単純に「 isDesignator」に設定し、一致するものを選択し、一致しないものを選択解除します。 PCBフィルターの追加により、デジグネータを簡単に選択できます。 次に 記事を読む