Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
製造
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
製造
製造
リソースライブラリでは、PCB設計とプリント基板製造の詳細を紹介しています。
How Design Decisions Affect PCB Fabrication
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェア
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
GovCloud
Octopart
Requirements & Systems Portal
SiliconExpert
Z2Data
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
Americas
EMEA
ANZ
APAC
PCB設計のためにメーカーに部品調達を依頼するメリットとデメリット
1 min
Blog
ターンキーPCB製造および組み立ては便利ですが、これらのサービスプロバイダーに部品の調達を信頼できますか?
記事を読む
ティアドロップにより設計の量と質を高める方法
1 min
Blog
1つでもプリント回路基板を設計したことがあれば、開発のさまざまな段階で、予期しない問題の対応に苦労したことがあるでしょう。一般に、組み立てや製造のプロセスで、穴の位置がずれたり思いがけずドリルが範囲からはずれたりすることで、問題が発生します。基板を破棄することがない場合でも、時間の経過とともにトラックが分離する問題につながる可能性があります。そのような問題が非常に一般的で、かつ設計者のコントロールを超えているよう見えるにもかかわらず、設計においてこのような問題に備え、発生を予防するためにどのような対策を取ることができるでしょうか? 穴の位置調整およびドリルの位置合わせの問題 PCBにドリルで穴を開ける際、2つの原因により問題が発生する可能性があります。1つは穴が指定の位置から若干ずれること、もう1つはドリルの位置合わせが若干ずれることです。さらに、レイヤーを貼り合わせる際に非常にわずかですがレイヤーが動くことで、見えないパッドのずれが発生します。 特に設計がリジットフレキシブル基板の場合、ドリルによる潜在的な問題に加え、機械的応力がPCB設計に影響することがあります。時間が経つにつれて、フレキシブル設計の銅箔接続部の整合が損なわれる可能性があります。 リジッドフレキシブル設計に発生することが予期される機械的応力や熱応力が加わった場合、対処しなければさらに繰り返し発生する可能性があります。設計プロセスで、フレキシブル回路への銅箔接続部に加わる屈曲および熱応力を考慮することが重要です。これらの問題に対処しない場合や、問題を考慮せずにプリント回路基板が設計された場合、生産歩留まりにマイナスの影響が出る可能性があります。 PCBの品質や歩留まりを向上させるティアドロップ 次の設計でティアドロップを追加することは、製造可能性を求める設計にとって重要なステップです。ティアドロップは、ドリルで開けられた穴の周りの銅箔を支える力も、ドリルの位置合わせの信頼性も増します。Altium
®
Designerで簡単に使用できるティアドロップは、マウスでクリックするだけで、トラック-パッド間、トラック-ビア間、トラック-トラック間の接続を強化します。 Altium Designerの [Teardrop] ダイアログによりスピーディーかつ簡単にティアドロップを作成 無料ホワイトペーパーをダウンロードし、次のPCB設計でティアドロップを使用して品質や歩留まりを向上させてください。
記事を読む
ODB++ 対 Gerber X2 対 IPC-2581:PCB製造ファイルフォーマットの戦い
1 min
Blog
Intelligent PCB design output file formats include ODB++, Gerber X2, Gerber X3, and IPC-2581. These files are essential for PCB manufacturing.
記事を読む
PCB製造において避けるべき5つの要素
1 min
Thought Leadership
PCB設計者
最後のデザインレビューが完了し、必要な承認の署名をもらい、作業がほとんど完了した状況を想定してみます。コンポーネントが調達され、基板のレイアウトが完成しても、最大の課題がまだ残っています。設計の意図を製造部門へ正しく伝えなければ、設計にかけた何か月もの時間と、チームの労力は水泡に帰すことになります。 しかし、このような設計の後段階の処理は、どのような方針で行えばいいのでしょうか? 製造部門に必要なすべてのファイルを出力するためのツールは用意されています。しかし、デジタルの情報から物理的な品物への翻訳プロセスは、それほど簡単で明瞭なものではないのは明らかです。実際のところ、何か月もかけて完璧な基板レイアウトを作成しても、設計の意図を製造用ドキュメントで明確に伝達できなかったために、大きな失敗が引き起こされることも考えられます。 ドキュメント作成プロセスにおいて遵守するべき真理が1つあるとするなら、それは従来の常識を否定し、 より多くの詳細を記載する方が、少ないよりも良いと考えることです。それでは、ほとんどのPCB設計者が一般にドキュメント作成プロセスで見過ごしている細かい詳細は何でしょうか? PCB製造業者から最も嫌われる5つの点の概要をここに示します。ドキュメント作成のプロセスにおいて、これらの点に留意すれば、設計が却下されることを防止できます。 #1 - PCBドキュメントの内容が不完全である 当然のことのようですが、PCBの設計プロセスや仕様を、製造業者が必要とする重要なファイルへ変換する作業は決して単純明快なものではありません。そして、製造業者へ送るドキュメントに1つの間違いがあっただけでも、製造業者で大きな混乱を招き、生産プロセス全体を停止させてしまう可能性があります。不完全な内容のPCBドキュメントが製造業者の手に渡ることを防ぐため、次のようないくつかのガイドラインを頭に留めてください。 使用しているPCB設計ツールで、出力ドキュメントを手作業で生成する必要がある場合、出力するファイルに注意し、それらが単一のリポジトリ内で整理されていることを確認します。 製造業者に製造用のファイルを送付する前に、製造業者がどのようなファイルを、どのフォーマット(Gerber、ODB++、その他)で要求しているのかを正確に確認しておきます。 単一の社内用CADファイルを製造業者に送り付け、そのファイルを読み取れるソフトウェアを相手が持っていることに期待してはいけません。 簡単に言うと、完全なPCBドキュメントパッケージには、製造業者に必要なすべてのファイルが、推定作業の必要なしに簡単に解釈できるようなファイル形式と構造で、整理されて含まれている必要があります。製造業者に冗長なファイルや、エラーの含まれているファイルが渡った場合、製造プロセスの遅延を引き起こすことになり、是非とも回避すべき事態です。 完全なドキュメントデータパッケージ(出力ジョブファイル) #2 - クラスの種類が示されていない クラス2はPCBドキュメントの業界標準ですが、もし別のクラス(1または3)で設計を行った場合、マスター図面は大幅に変化します。このため、次のガイドラインに従って、正確にどのクラスが使用されているのかを明確にすることが重要です。 製造業者が、標準のクラス2プロセスが必要なものと想定しないよう、PCB製造および組み立て図面の両方に、必要なクラスで推奨される構築標準を明確に示しておくことをお勧めします。
記事を読む
Gerber RS-274Xを置き換える上位2つのファイル形式の代替案
1 min
Thought Leadership
世界中で設計されたPCBの約90%に使用されているにもかかわらず、Gerber RS-274Xにはいくつかの実用的な制限があり、製造プロセス中に多くの問題を引き起こす可能性があります。このファイル形式の代替案は何か?続きを読んで確認しましょう。メタ説明:Gerber RS-274Xは、すべてのPCB設計の約90%で使用されていますが、いくつかの実用的な制限があります。 Gerber RS-274XはPCB設計ソフトウェアの事実上の標準ですが、それが最良であるとは限りません。世界中で設計されたPCBの約90%で使用されているにもかかわらず、このファイル形式にはいくつかの実用的な制限があり、製造プロセス中に多くの問題を引き起こす可能性があります。 Gerber RS-274Xの制限 Gerber X形式のいくつかの制限があり、多くの設計者が痛感しています。これらの問題を経験したことがあるなら、何を言っているかわかるでしょう: 銅層が順序どおりでないボードを受け取ったことはありますか? ドリル穴がずれていたり、完全に欠けていたりしたボードを受け取ったことはありますか? 製造ノートの誤解釈がスケジュール遅延を引き起こしたことを、管理職やクライアントに説明したことはありますか? Gerber RS-274Xは、信号層やプレーン層の銅の形状の正確なイメージを描画するのに非常に正確で信頼性があります。しかし、問題はこの標準がPCB製造と組み立ての他のすべての側面を考慮に入れていないことです。 例えば、レイヤースタックの順序と材料情報、ドリルデータ、ピック&プレースデータ、ネットリスト、テストポイントレポートなどの転送があります。これらの他のデータセットは、別のユーティリティによって別のプロセスとして生成する必要があります。簡単に言うと、Gerber RS-274X形式は、設計ドメイン(CAD)から製造ドメイン(CAM)への完全な設計の転送を行いません。 設計ドメイン(CAD)から製造ドメイン(CAM)への転送 代替手段は何ですか? これらの問題を解決するためには、製造と組み立てのデータのすべての側面を考慮に入れた設計転送標準を採用する必要があります。幸いなことに、PCBデザイナーと製造業者および組み立て業者間の正確で効率的なデータ交換を可能にする2つの新しいオープンスタンダードが最近リリースされました。 Gerber
記事を読む
PCB設計における上位6つのDFM問題
1 min
Thought Leadership
PCBデザイナーとして、さまざまな要件と期待を管理する必要があります。電気的、機能的、および機械的な側面を考慮する必要があります。さらに、PCBレイアウトは、可能な限り最高の品質で、可能な限り低いコストで、タイムリーに生産されなければなりません。そして、これらの要件をすべて通じて、DFM(製造可能性のための設計)も考慮する必要があります。これは PCB設計 プロセスの大きな部分であり、適切に行われない場合、頻繁に問題を引き起こすことがあります。PCBデザインにおける3つのDFMの問題を見てみましょう。 PCBレイアウトにおける一般的なDFMの問題 CADツールに安心を見出すのは簡単ですが、CADツールが簡単に解決できないDFMの問題を作り出すことを許してしまうかもしれません。回路基板がすべての電気的ルールチェックに合格し、電気的に正しい場合でも、製造可能でない場合があります。なぜこのようなことが起こるのでしょうか?PCB設計ツールは、電気的に機能的 かつ大量生産で製造可能な回路基板レイアウトを作成するのに役立つはずではないでしょうか? PCBのレイアウトが非常に複雑になり、DFM(設計製造統合)の問題を多く隠してしまうことがあります。これらのDFMの問題のいくつかは、組み立て、電気テスト、または製造に問題を引き起こしますが、製造プロセスについてより多くを知っていれば、これらを克服することができます。製造プロセス全般についてもっと学ぶには、 Altium PCB Design Blogのこの記事をご覧ください。設計レビュー中に製造業者が何を探しているかをもっと知りたい場合は、ここにPCBレイアウトで彼らが特定しようとする最も一般的なDFM問題がいくつかあります: 不均一なSMDパッド接続 SMDパッドの誤ったはんだマスク開口部 SMDパッドのオープンビア アシッドトラップ クリアランス 一般的な信頼性標準違反 これらの問題を防ぐためには、PCBレイアウトツールの設計ルールに依存することが重要であり、これにより回路基板を最小限の設計レビュー時間で製造に移行できるようになります。 不均一なSMDパッド接続 小型のSMD部品、例えば0402、0201などは、リフローはんだ付け中のトゥームストーニングを防ぐために均一な接続が必要です。BGAパッドにも同様のことが当てはまり、信頼性の高いはんだ付けを保証するためです。これは、コンポーネントのフットプリントに正しいパッドサイズを配置することによって簡単に実現できます。一般的なコンポーネントには定義されたパッドサイズ(例えば、
記事を読む
レイヤースタックを初めから間違えないようにする方法
1 min
Thought Leadership
PCBの製造工程で最も犯しやすい間違いの1つは、層の順序の誤りです。 確認しないままにしておくと、全工程が無駄になる場合があります。 PCB実装工程を経た製品は、電気的導通の観点からは機能するかもしれません。電気的に導通していれば、電気的検査にも合格するかもしれません。しかし、 プレーンや信号層の順序と層間の距離を最優先にしている設計では、最終的な実装段階で障害が発生します。この問題を予防するにはどうすればよいでしょうか ? 詳細な方法 正しい順序で積層し、後工程外観検査を行うために必要な情報を製造業者に確実に伝えるには、そうした情報を銅パターンとして直接設計に組み込んでおく必要があります。これらのパターンを設計に含め、最終的な実装の検査のための機構を提供するのは PCB設計者の責任です。該当するのは、以下の機能です。 他の全てのレイヤーと関連付けて定義された番号割付方針によりレイヤーを正確に識別する。 レイヤーの順序を目視で簡単に検査できるよう積層ストライプを追加する。 エッチング後の銅の厚さと幅を簡単に確認できるテストトレースを提供する。 製造データ内に適切な銅パターンを設計しておけば、積層順序を間違える心配はほとんどなくなります。早い段階で詳細情報を提供することで、問題を回避し、コストと時間を削減して、製造プロセスを効率化できます。 レイヤースタックを初めから間違えないために必要な機能を追加する方法に関心がありますか? レイヤースタックを間違えないようにする方法についての無料のホワイトペーパーをダウンロードしてください。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
34
ページ
35
ページ
36
現在のページ
37
ページ
38
ページ
39
Next page
››
Last page
Last »