Layer Stackup Design

Reduce noise and improve signal timing, even on the most complex boards.

伝送線路

Filter
0 SelectedClear ×
Clear
TRANSLATE:

銅箔の粗さが信号とインピーダンスに与える影響 TRANSLATE:

銅箔の粗さが信号とインピーダンスに与える影響
工学、特に電気工学と機械工学の歴史は、途中で役立たずになった近似値で溢れています。これらの近似値は一時期はうまく機能し、数十年にわたって技術を大きく前進させました。しかし、どんなモデルにも適用可能な限界があり、典型的なRLCG伝送線モデルや周波数非依存のインピーダンス方程式も例外ではありません。 では、これらの方程式の問題は何でしょうか?上級のPCBエンジニアや製造業者はこれらを頻繁に引用し、それらを福音のように見せかけますが、多くの複雑な技術概念と同様に、これらのモデルや方程式はしばしば十分な文脈なしで伝えられます。ここで物理学が醜い顔を出し、モデルが引き続き適用可能であるためには変更が必要だと告げます。 銅箔の粗さモデリングや関連する伝送線インピーダンスシミュレーションは、標準モデルが信号の振る舞いを正しく扱えない多くの領域のうちの一つです。 銅箔の粗さがインピーダンスと損失にどのように影響するか 伝送線インピーダンスのRLGCモデルを見ると、インピーダンスに寄与する4つのパラメータがあります(すべて標準単位/単位長さで表されます): R:伝送線の直流抵抗で、線の導電率に依存します。 L:伝送線のループインダクタンスで、純粋に線の幾何学的形状の関数として取られます。 C:線の全容量で、これも線の幾何学的形状の関数として取られます。 G:基板の導電率で、特定の周波数での損失角と任意の寄生直流導電率をモデル化することを意味します。 業界の多くの人があなたに教えてくれないことがあります:これらのパラメーターはすべて周波数依存であり、抵抗項を含みます!「ちょっと待って、EE101のクラスでみんなが抵抗は周波数に依存しないと言っていたけど、どういうこと?」と思っているかもしれません。 2014年にさかのぼると思いますが、 IEEE P802.3bj タスクフォースが初めて100 Gb/s Ethernet PHYインターコネクトの因果モデルを受け入れる提案を提示されました。このモデルでは、上記のインダクタンス、容量、抵抗の項が周波数依存性を含むように修正されました。基板の分散を考慮することで容量項は容易に修正されました。では、抵抗とインダクタンスはどうでしょうか?高周波での導体内のスキン効果により、周波数による抵抗の依存性が生じます。 スキン効果は、電流が高周波で振動するときに、導体の表面近くに電流が集中する現象を指します。完全に滑らかな導体では、スキン効果はGHz周波数に達するまでごくわずかです。しかし、銅の粗さが存在する場合、特定の周波数範囲内で損失がかなり大きくなることがあります。スキン効果は線路のインダクタンスも増加させます。全体的な効果は、標準のRLGCモデルで予測される値から線路インピーダンスの変更です。 基板の分散を考慮しない場合でも、 等価回路項の分散は常に理想的なインピーダンスからの逸脱を引き起こします。マイクロ波やミリ波領域に深く入ると、インターコネクトを設計する際に銅の粗さを考慮する必要があります。
インピーダンスに影響を与える伝送線路の特性 - 隠された特徴 インピーダンスに影響を与える伝送線路の特性 - 隠された特徴 こちらと他のいくつかの記事では、 Altiumリソースセクションで、伝送線路インピーダンスについて様々な観点から取り上げています。私は以前、 シミュレーション技術とインピーダンスの進化という記事で伝送線路インピーダンスについて取り上げましたが、インピーダンスに関して提供できる情報は尽きたかのように思われるかもしれません。しかし、実際には、いくつかの特徴は触れられただけでした。この記事では、それらの特徴とその効果、および伝送線路インピーダンスを制御するために使用される基本方程式について詳しく説明します。 インピーダンスまたは不一致の原因 以前の記事で議論されたように、表面層上の伝送線路のインピーダンスを決定する4つの主要な変数には以下が含まれます: それが通過する平面上のトレースの高さ。 トレースの幅。 トレースの厚さ。 トレースを支えるために使用される絶縁材料。 上記の4つの変数が分かれば、PCB内のどの特徴がインピーダンスに関連する影響を持つかを判断することができます。これらの特徴には以下が含まれます: 同一層内でのトレース幅の変化。これは一般にトレースネッキングと呼ばれます。 トレースネッキングは、トレースがSMD(表面実装デバイス)やトレースの幅よりも小さい直径のスルーホールなど、狭いパッドに近づくとトレース幅が減少することを指します。 トレース厚さの変化。 平面上の高さの変化。 伝送線路に沿ったスタブ。 伝送線路に沿った負荷。 コネクタの遷移。 不適切な終端。 終端のない状態。 大きな電力平面の不連続。
Altium Need Help?