Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
パワーインテグリティ
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Power Analyzer by Keysight
Power integrity analysis at design time.
Learn More
パワーインテグリティ
Overview
All Content
ウェビナー
Filter
0 Selected
Tags by Type
0 Selected
全て
Software
0 Selected
全て
Clear
×
Clear
0 Selected
Tags by Type
全て
3
ウェビナー
1
ホワイトペーパー
2
0 Selected
Software
全て
3
PDN Analyzer - 電流密度解析ツール (Legacy)
3
Thought Leadership
デカップリングコンデンサとバイパス配置ガイドライン
電力整合性の問題は通常、電源の観点から見られますが、ICからの出力を見ることも同じくらい重要です。デカップリングおよびバイパスコンデンサは、PDN上で見られる電力変動を補償することを目的としており、信号レベルが一貫しており、ICの電源/グラウンドピンで一定の電圧が見られることを保証します。次のPCBでこれらのコンポーネントを成功裏に使用するための重要なバイパスおよびデカップリングコンデンサ設計ガイドラインをいくつかまとめました。このブログでは、バイパスコンデンサとデカップリングコンデンサの違いについて取り上げます。 2つの関連する電力整合性の問題 デカップリングキャパシタとバイパスキャパシタは、異なる2つの電力整合性問題を解決するために使用されます。これらの電力整合性問題は関連していますが、異なる方法で現れます。最初に指摘すべき点は、「デカップリングキャパシタ」と「バイパスキャパシタ」という用語が電力整合性に使用される場合、それらは誤称であり、何もデカップルまたはバイパスしません。また、ノイズを地面に渡すわけでもありません。単に時間をかけて充電および放電し、ノイズの変動に対応します。これらの用語は、電力整合性戦略の一部としてこれらのキャパシタの機能を指します。 まず、デカップリングコンデンサを考慮しましょう。PCBデカップリングコンデンサの配置の目的は、低周波の電源ノイズ、 PDN上のリンギング、およびPDN上のその他の電圧変動に対して、電源レール/プレーンとグラウンドプレーン間の電圧が一定に保たれるようにすることと一般に言われています。電源とグラウンドプレーンの間に配置されたデカップリングコンデンサは、プレーンと並列になり、これにより全体のPDN容量が増加します。実際には、 インタープレーン容量が不足していることを補い、PDNインピーダンスを減少させるため、PDN電圧のリンギングが最小限に抑えられます。 バイパスコンデンサについて考えてみましょう。これらもPDNと駆動IC内で一定の電圧を維持することを目的としていますが、補償する電圧は出力ピンとPCBのグラウンドプレーンの間の電圧です。電源供給ピンとICのグラウンド接続の間に配置されていますが、異なる機能を果たします。それは、キャパシタからグラウンドへのバウンスを抑制することです。デジタルICがスイッチすると、ボンドワイヤー、パッケージ、ピンの寄生インダクタンスが原因で、ドライバーの出力とグラウンドの間の電圧が増加します。バイパスコンデンサは、グラウンドバウンス電圧とは反対の電圧を出力し、理想的には総電圧変動がゼロになるようにします。 上記のモデルでは、バイパスコンデンサ(CB)とICパッケージ/グラウンド接続上の漂遊インダクタンスL1を含む閉ループがあります。出力ピンとグラウンドプレーンの間で測定される グラウンドバウンス電圧 V(GB)に注目してください。残りのインダクタンスはすべて寄生成分であり、バイパスコンデンサの応答時間に影響を与え、グラウンドバウンスを補償します。理想的なモデルでは、バイパスコンデンサによって見られる電圧は、スイッチング中に漂遊インダクタンスL1によって生成されるグラウンドバウンス電圧を補償します。 バイパスコンデンサの配置ガイドライン キャパシタからグラウンドへのバウンスが発生する仕組みを見れば、 バイパスキャパシタをどこに配置するかは明らかでしょう。上記の回路モデルにおける寄生インダクタンスのため、バイパスキャパシタは電源ピンとグラウンドピンにできるだけ近く配置する必要があります。これは、多くのアプリケーションノートやコンポーネントのデータシートで見つかるアドバイスと一致しています。 寄生インダクタンスに関連するもう一つの考慮事項は、ICへの接続がどのようにルーティングされるかです。キャパシタからICピンへ短いトレースをルーティングするのではなく、キャパシタをビアを通じて直接グラウンドプレーンと電源プレーンに接続するべきです。 パッドとトレースの間隔要件をこの配置で守ることを確認してください。 なぜこのような配置が必要なのでしょうか?その理由は、グラウンド/パワープレーンの配置(プレーンが隣接する層にある限り)は非常に低い寄生インダクタンスを持つからです。実際、これはボード内で最も低い寄生インダクタンスの源です。ボードの裏側にバイパスコンデンサを配置できる場合、より良い配置を実現できるかもしれません。 デカップリングコンデンサの設計ガイドライン PDNで必要な PCBデカップリングキャパシタのサイズを決定した後、入力電圧の変動を補償できるように、どこかに配置する必要があります。実際には、複数を使用するのが最善で、並列に配置され、並列配置により有効な直列インダクタンスが低くなります。 古いガイドラインでは、基板上のどこにでも配置できるとされていました。しかし、これには注意が必要です。なぜなら、デカップリングキャパシタとターゲットICの間の寄生インダクタンスが増加し、PDNのインピーダンスとEMIへの感受性が高まる可能性があるからです。代わりに、エッジレートが速いICの場合、ターゲットICに近づけて配置するべきです。下の画像は、ICの近くに配置された典型的なバイパスおよびデカップリングキャパシタの配置を示しています。これは、キャパシタとICの間の寄生インダクタンスが非常に低いため、高速回路にとって最適な配置の一つです。
Thought Leadership
同時スイッチングノイズですか、それともクロストークですか?
同時スイッチングノイズとクロストークをどのように区別できますか?この記事では、これら2つの信号整合性問題の違いについて説明します。
1:6:07
Webinars
電流密度解析ツール PDN Analyzer
™
2.0
エレクトロニクス設計の密度と複雑さが増し続ける中、電源分配ネットワーク (Power Distribution Network: PDN) の電圧と電流性能に対する設計上の影響を完全に理解することは、今までにないほど困難かつ重要になっています。 プロトタイプ設計後の検討事項としてPDNの問題を扱うのではなく、基板レイアウトプロセスの一環として、すべてのIRドロップ、電流密度の問題、および電圧降下を正確に識別して解決する方法が必要です。 AltiumDesigner
®
用のCST
®
を搭載したPDN Analyzer
™
を使用すると、基板設計プロセスで発生したPDNの問題を統一環境の設計ワークスペース内で簡単に解決できます。以下は、セッションで紹介されたトピックとなります。 PDN Analyzer
™
2.0の機能紹介 電流密度と電圧降下に関するレイアウトの分析方法 PCBエディタで直接統合設計プロセスの一環としてPDN Analyzerを効率的に使用する方法 PDN Analyzerの分析結果に基づく電源分配の最適化 今すぐAltium Designerの拡張機能である PDN
高電圧設計のためのIPC-2221 PCBクリアランス計算機の使用
PCB設計およびアセンブリの規格は、生産性を制限するものではありません。代わりに、複数の業界にわたって製品設計と性能の統一された期待値を作成するのに役立ちます。特定の設計用の計算機、監査や検査のプロセスなど、ツールはコンプライアンス向けに標準化されます。 高電圧PCB設計において、PCB設計の重要な一般規格はIPC-2221です。多くの重要な設計的側面がこの設計規格にまとめられており、そのいくつかは単純な数式に要約されています。高電圧PCBの場合、IPC-2221計算機を使用すると、PCB上の導電要素間の適切な間隔要件をすばやく判断できます。これにより、次の高電圧基板が動作電圧で安全に保たれるようになります。設計ソフトウェアにこれらの仕様が自動化された設計ルールとして含まれている場合、生産性を維持し、基板を構築する際のレイアウトの間違いを避けることができます。 IPC-2221とは IPC-2221(2012年発効のレビジョンB)は、多くのPCBの設計的側面を定義する、一般的に受け入れられている業界規格です。例えば、材料 (基板やメッキを含む)、試験性、 熱管理とサーマルリリーフ、 アニュラリングなどに関する設計要件が挙げられます。 一部の設計ガイドラインは、より具体的な設計規格に取って代わられています。例えば、IPC-6012とIPC-6018は、それぞれリジッドPCBと高周波PCBの設計仕様を提供します。これらの追加規格は、一般的なPCBのIPC-2221規格とほぼ一致するように意図されています。 ただし、IPC-2221は通常、製品の信頼性や製造歩留まり/欠陥を評価するために使用される認定規格ではありません。リジッド基板の場合、IPC-6012またはIPC-A-600のいずれかが、製造されたリジッドPCBの認定に通常使用されます。 IPC-2221B 高電圧設計における導体スペーシング 高電圧PCB設計の重要な設計要件は、IPC-2221B規格で指定されています。これらの1つは導体クリアランスであり、次の2つの点に対処することを目的としています。 高電界強度でのコロナまたは絶縁体破壊の可能性 樹枝状成長と呼ばれることもある導電性陽極フィラメント形成の可能性( 下記参照) 最初のポイントは、PCBの導体間に適切な最小クリアランスを設定することで最も簡単に制御できるため、最も重要です。2番目の影響は、適切な配線間隔、 材料の選択、処理での一般的な清浄度によっても抑えることができます。これらの影響を防ぐために必要な間隔は、IPC-2221規格の2つの導体間の電圧の関数としてまとめられています。 下の画像は、IPC-2221規格の表6-1を示しています。これらの値は、2つの導体間の電圧の関数として最小導体間隔を示しています。これらの値は、導体間のピークACまたはDC電圧のいずれかで指定されます。IPC-2221では、500Vまでの電圧に対して固定された最小導体間隔値のみを規定していることに注意してください。2本の導体間の電圧が500Vを超えると、下表に示す電圧ごとのクリアランスの値を用いて、最小導体間隔を計算することになります。500Vを超える各電圧は、表の一番下の行に示されている量だけ、必要な最小クリアランスに追加されます。 高電流時の温度上昇 すべての高電圧PCBが高電流で動作するわけではありませんが、高電流を使用するPCBは、導体の大きさが十分でない場合に高温上昇になる可能性があります。PCBの温度上昇は、導体のDC抵抗に関連するジュール熱によって発生します。したがって、高電流を流す導体の断面積は、電流も大きい場合は大きくする必要があります。
Thought Leadership
コンデンサのヒートシンクからのEMIとその対策方法
適切なヒートシンクを選択することで、システムを冷却し、EMIを防ぐことができます. 明らかではないかもしれませんが、また、ほとんどの設計者がチェックするとは思わないかもしれませんが、ヒートシンクはスイッチング要素に接続されている場合、EMIを発生させることがあります。これは電源設計における一般的な問題であり、特にヒートシンクが高電流を引き出し、高周波でスイッチングするコンポーネントと接触する場合に発生します。ヒートシンクからのEMIを減らすには、導電部分と放射部分のバランスを取る必要があり、これを行うためのいくつかの簡単な設計手順があります。 ヒートシンクと寄生容量からのEMI ほとんどの設計者が基板上のコンポーネント用に ヒートシンクを選択することを考えるとき、彼らはおそらく単にメーカーの推奨に従うだけです。彼らはメーカーが推奨するサイズと同様のヒートシンクを使用するかもしれませんが、熱伝導率が高い材料で作られたものを選ぶかもしれません。設計者の中には、 アクティブ冷却対策、例えば冷却ファン、または(極端な場合には)液体冷却や蒸発冷却を選択する人もいます。これらの対策は、特にメーカーが必要なヒートシンクと組み立てガイドラインを提供している場合、標準化されたコンポーネントを使用する際に適切です。 CPUの速度が1 GHzを超えて以来、ヒートシンクからの放射および導電EMIがより目立つようになりましたが、これは電力電子およびコンピュータシステム業界外の多くの設計者には気づかれなかった可能性があります。今日では、一般的にヒートシンクは単に接地されるべきであり、これがEMIの問題を解決するとされています。実際には、これだけでは問題を完全に解決するわけではなく、問題を解決するには寄生容量を管理する必要があります。 EMIの両方のタイプは、スイッチングICと近くのヒートシンクとの間の寄生容量結合によって生じます。スイッチングトランジスタを持つ集積回路の構造を調べると、チップパッケージと任意の 熱伝導ペーストやインターフェース材料がキャパシタの絶縁領域を形成しているのがすぐにわかります。この寄生容量がヒートシンクに共通モード電流を誘導する責任があります。 MOSFETに垂直ヒートシンクが接着された例。 次に何が起こるかは、ヒートシンクが接地されているかどうかによります。ヒートシンクが接地されていない場合、ヒートシンクとチップは容量結合電流の地面への容易な戻り道がないため、放射されたEMIの源として機能します。電流はヒートシンク内の複数の電磁共鳴を励起し、高電流と強い放射を持つヒートシンク内の一連の領域を作り出します。これは、ヒートシンクが通常デフォルトで接地される理由の一つです。しかし、ヒートシンクに誘導された強い電流が地面に向けて偏向されると、 グラウンドリターンパスに応じて、近くの回路で伝導EMIの源を作り出す可能性があります。 なぜヒートシンクからの放射または伝導EMIがより頻繁に対処されないのでしょうか?その理由はいくつかあります。通常、ヒートシンクからのEMIが顕著になるのは以下の二つの場合です: スイッチング時の高電流。 これは、大きなスイッチングレギュレータで大型トランジスタがスイッチングする電力電子工学における一つの問題です。より短い時間でより高い電圧にスイッチングすると、ヒートシンク内のより大きな変位電流が生成されます。 プロセッサの高速スイッチング。 より高速に動作するプロセッサは、ヒートシンク内に大きな変位電流を簡単に生成することができます。また、ヒートシンク内の高周波共鳴を容易に励起することもできます。 どちらの場合も、高電圧/電流のスイッチング電源を設計する際には、ヒートシンクへの容量結合を考慮する必要があります。他のアプリケーションには、低電圧で動作するデバイスのGPUやCPUのためのVRMが含まれます。 ヒートシンクからの伝導および放射EMIのバランス
Thought Leadership
IoT製品におけるDC-DCコンバーターのEMIを抑制するためのいくつかの技術
このリチウムイオンバッテリーは、安定した電力を提供するためにスイッチングレギュレータに接続されている可能性が高いです。 さまざまなソースからのIoTデバイスのEMI感受性を抑制することは、新製品が設計通りに動作することを保証する上で重要です。同様に、EMC規制に準拠させたい場合、IoT製品は不要な放射を制限するべきです。次の製品からの放射EMIのさまざまなソースの中で、デバイス自体内のEMIも信号および電力の整合性の問題を防ぐために制御されるべきです。 IoTデバイスの電源は、特にMHzスイッチング周波数で一般的に動作するスイッチングDC-DCコンバーターの場合、放射および伝導EMIの問題のあるソースになり得ます。おそらく、ボードで複数のDC-DCコンバーターを扱うことになるでしょう。これらのコンバーターからのEMIは、ノイズをフィルタリングし受信機を隔離するための重要なステップが実施されていない場合、無線受信機に干渉する可能性があります。レイアウト中にDC-DCコンバーターのEMIを減らし、IoT PCB内の他の敏感な回路を放射および伝導EMIから保護するために取ることができるいくつかの基本的な設計ステップがあります。 それはあなたのスタックアップから始まります ほとんどの信号整合性および電力整合性の問題と同様に、DC-DCコンバータのEMI削減は適切なスタックアップ設計から始まります。IoTデバイス用の機能満載のボードは、ルーティング、電源およびグラウンドプレーン、およびボード表面のコンポーネントに十分なスペースを提供するために、最小6層のボードを使用することが多いでしょう。層の数よりも、さまざまな層の配置が重要です。新しい携帯電話は、より大きなバッテリーのための追加のスペースを提供するために、すべてフレックスまたはリジッドフレックスになっています。 DC-DCコンバータ回路が表面層に配置されるため、表面層の直下にグラウンドプレーンを含め、できるだけ大きくする必要があります。これにより、表面層の他の信号に対しても、低ループインダクタンスを持つ適切な参照平面が提供されます。古いDC-DCコンバータのデータシートの中には、出力インダクタの前の出力トレースの周りのグラウンドプレーンの一部を切り取ることを推奨しているものがあります。これは、低いスイッチング周波数を使用し、より高い信号レベルで動作する古いコンバータにとっては問題ないかもしれませんが、新しいIoT/モバイルデバイスのEMIの観点からは良くありません。 内部レイヤーでは、十分な 面間キャパシタンスを提供するために、電源プレーンをグラウンドプレーンの隣に配置します。この配置は、適切に配置された デカップリングキャパシタと合わせて、電源バス上のリンギングを減少させるのに役立ちます。これにより、内部レイヤーでのストリップラインルーティングも可能になります。レイヤー配置でのシールディングを活用することに加えて、スタックアップ設計における目標は、 PDNインピーダンスを可能な限り低くすることで、リンギングからのEMIを抑制することです。 隔離 隔離には、距離とシールディングの2つの形態があります。高電流出力を持つスイッチング電源を接地された シールディング缶で隔離することは、近くの大きなループインダクタンスを持つデジタル回路で意図しないスイッチングを誘発する放射EMIを防ぐための明白な解決策です。バッテリーで動作し、電力を節約して使用しているIoT製品では、シールディング缶が必要ないかもしれません。あまり強くない伝導ノイズはフィルタリングできます(これは出力キャパシタの一つの用途です)。 代わりに、基板内の重要な機能ブロックを、異なるエリア間に接地された銅プールまたはビアフェンスで分離することができます。ビアフェンスは通常、単一の波長(通常はスイッチングレギュレータの膝周波数に対応する周波数)で 放射EMIを抑制するために最適化されていることに注意してください。無線受信機との干渉から放射EMIを抑制することが目標である場合、受信回路をコンバータから遠ざけて配置する必要があります。コンバータはいくつかの放射放出を生じるかもしれませんが、これらの放出の強度は、受信機がコンバータから遠く離れた場所にある場合、受信機で低くなります。 スマートフォンのPCBでのシールド 適切なコンポーネントを選択する DC-DCコンバータ回路のコンポーネントは、EMI抑制を提供する上で重要な役割を果たします。レギュレータのPWM信号の膝周波数よりも高い自己共振周波数(高い)を持つキャパシタを使用する必要があります。これにより、望ましい容量性インピーダンスを供給できるようになります。また、インダクタも磁場をより良く閉じ込めるために、シールドされたタイプを使用するべきです。 大手ICメーカーは、小型フォームファクターと手頃なコストで低EMI
Pagination
First page
« First
Previous page
‹‹
ページ
6
現在のページ
7
ページ
8
ページ
9
ページ
10
ページ
11
Next page
››
Last page
Last »
💬
🙌
Need Help?
×
🛟
Support Center
📣
Ask Community
📞
Contact Us