Power Analyzer by Keysight

Power integrity analysis at design time.

パワーインテグリティ

Filter
0 Selected Tags by Type 0 Selected 全て Software 0 Selected 全て Clear ×
Clear
0 Selected Tags by Type
0 Selected Software
高Dk PCB材料の利点 高Dk PCB材料の利点 「高速設計」と「低Dk PCBラミネート」の用語は、しばしば同じ記事で、そしてしばしば同じ文で使用されます。低Dk PCB材料は、高速および高周波PCBにおいてその場を持っていますが、高Dk PCB材料は電力の整合性を提供します。低Dk PCBは、一般に損失正接が低い傾向にあるため選ばれます。したがって、高Dk PCB材料は、高速および高周波PCBに対して見過ごされがちです。 高速/高周波ボードの電力の整合性を見るとき、単に信号損失を受け入れるか、高速ラミネートによって提供される値を受け入れるのではなく、安定した電力のための全体的な戦略の一部として誘電率定数を考慮すべきです。これには、PCBの電力の整合性に影響を与える誘電率定数の実部と虚部の両方が含まれます。これを念頭に置いて、電力の整合性を確保するために高Dk PCB材料が果たす役割を見てみましょう。 高Dk PCB材料とPCB電力の整合性 まず最初に、電力の整合性を見るとき、常にレギュレータ段階から出力される電圧が、PDN全体で電力が流れるにつれて一定であることを確保しようとしています。これには、PDN分析と電力の整合性の2つの側面が挙げられます: DC解析:ここでは、PDNを構成する 導体間のIR降下のみに関心があります。誘電率定数はDC解析では役割を果たしません。 AC解析:AC解析とは、電力平面上の任意の時間変動電流の振る舞いを意味します。これは、PDNのインピーダンスが重要となる場面であり、下流コンポーネントで見られる電圧変動は、 PDNインピーダンスと時間変動電圧(オームの法則)の積です。 電力面とグラウンド面の間の誘電体として使用される高Dk PCB材料は、重要な電力整合性の利点を提供します。特に、グラウンド面と電力面の間のPCB材料の高Dk値は、より大きな 面間キャパシタンスを提供し、これはあなたの平面がより大きなデカップリングキャパシタのように機能し、PDNインピーダンスが低くなることを意味します。グラウンド面と電力面を近づけることも面間キャパシタンスを増加させます。 2006年のIEEE論文からのいくつかの例示的なシミュレーション結果が以下に示されています。 誘電率定数のもう一つの重要な側面は、虚数部分またはDf値です。これは通常、損失正接を使用して要約されますが、これは高速/高周波ボードで特定の積層材の有用性を調べる際に使用する唯一の指標ではありません。
PFC回路設計と電源システムのレイアウト Thought Leadership PFC回路設計と電源システムのレイアウト 私たちが望むように、PCBへの電力入力が常にクリーンなDCや正弦波信号であるわけではありません。整流器からのDCは出力キャパシタからのリップルを含んでいることがあり、AC信号にはノイズが含まれていたり、完璧な正弦波ではないことがあります。これらの問題を修正する方法はいくつかあり、適切なフィルタ回路を選択するか、入力波を整形してシステム内の負荷に最大の電力出力を生み出すことができます。 AC電源システムを扱っている場合、電源での電流/電力の引き下げを行うか、または負荷への利用可能な電力を増加させるために、電力因数補正(PFC)が必要になることがあります。PFC回路はICとして入手可能ですが、高電圧/高電流システムの要求に対応することはできません。電力因数を1に近づけるために、PCB上に独自のPFC回路設計とレイアウトが必要になります。ここでは、独自のPFC回路を設計しシミュレートする方法と、PFC回路のレイアウトのヒントをいくつか紹介します。 電力因数補正とは何か? 電源の力率は、実際に消費される実効電力と見かけの電力(RMSボルトおよびアンペアで)の比率であり、この数値は0から1の範囲です。ACソースに整流器を接続した 電源回路の典型的なスイッチングレギュレータは、入力電圧がそのピークに近づくと小さなバーストで電流を引き出します。入力線から引き出される電流が正弦波電圧波形から逸脱するほど、力率は小さくなります。力率は基本的に電力効率の別の指標です。 例として、レギュレータが96%効率的であると仮定します。全体の電源の力率が60%の場合、実際の効率は96%x 60%= 57.6%になります。PFC回路設計を使用する目的は、力率をできるだけ1に近づけることです。力率が1に近づくと、実際に消費される実効電力は、理想的なRMS入力電圧および電流を使用して計算する見かけの電力に近づきます。 新しい製品をヨーロッパで販売する予定がある場合、電源にPFCを適用することを確認する必要があります。最も重要な規制はEN61000-3-2で、少なくとも75Wの入力電力を持ち、サービス入口で最大16Aまで引き出す電力システムに適用されます。この規制は、レギュレータの入力で測定された39番目の高調波までの全高調波歪み(THD)にも制限を設けています。これはPFC回路のもう一つの利点を示しています。より大きな電力因数を持つ電源は、DCレギュレータの入力でTHDがほぼゼロになります。 PFC回路設計とトポロジー PFCコンバータは、 ブーストまたはバックトポロジーで実装できます。バックブーストトポロジーもありますが、入力電圧を通常、上げたり下げたりして一定レベルで調整する必要があるため、これほど人気はありません。バックとブーストの2つのバージョンは以下に示されています。これらの回路図が標準的なバックまたはブーストDC-DCコンバータから期待されるものと一致するなら、正解です!全体の回路図は同一ですが、これらの回路のコンポーネント選択が回路によって提供される電力因数の増加に影響を与えます。 PFC回路が一般的なスイッチングレギュレータと何が違うのか?PFC回路設計における重要な点は、適切な動作モードを選択することであり、これにはこの回路で正しいインダクタを選択することが含まれます。インダクタは、MOSFETがオンの間に入力電圧が上昇するにつれてインダクタを通る電流がどれだけ速く増加するかを決定します。MOSFETがオフに切り替えられると、インダクタは逆起電力を提供し、それによってより多くの電流を負荷に向けます。 インダクタのリップル波形は、一般的なスイッチングレギュレータの場合と同様に、インダクタのサイズによって決まります。インダクタが小さいほどリップル波は大きくなります。波形の制御は、MOSFETにPWMまたはPFMパルスを適用することで維持されます。以下に示される3つのPFC回路モードは、インダクタのサイズとMOSFETに適用される変調の種類によって決まります。以下の表は、各モードでの変調と電流特性をまとめたものです。 モード 変調 電流特性 CCM PWM 平均電流が理想的な正弦波電流に近く、リップルが低い、高速SiCショットキーダイオードを使用して効率を向上させる。最高の出力電力に最適。
Buckコンバータ用インダクタの選択方法 Thought Leadership Buckコンバーター用インダクタの選択方法 SMPSは、お気に入りの電子機器をスムーズに動かすために、静かに(しかし電気的にはノイジーに)活動しているデバイスの一つです。彼らは背景で静かに役割を果たしていますが、彼らがいなければボードは動作しません。電力をたくさん消費するアプリケーションのDC-DCコンバータ設計の一環として、安定した電力供給を高効率で負荷に提供するためには、コンポーネントの選択が非常に重要です。 数多くのDC-DCコンバータトポロジーの中で、バックコンバータは入力電圧を下げるために、高効率の電力変換を提供するために多くの用途で使用されます。これらの電力コンバータのコンポーネント選択に関する一般的な質問は、バックコンバータ用のインダクタをどのように選択するかです。バックコンバータ内のインダクタや他のコンポーネントを扱う際の目標は、電力損失を熱に限定し、同時に電流リップルを最小限に抑えることです。 バックコンバータのインダクタ 以下に示すのは、SMPS用の基本的なバックコンバータトポロジーです。この図では、MOSFETからの出力がPWM信号で駆動され、ユーザーが選択したデューティサイクルでMOSFETをオン/オフします。インダクタとキャパシタは、PWM信号が切り替わる際に負荷に安定した電流を供給するために重要な役割を果たします。最終的に、PWM信号のデューティサイクルは、ユーザーが負荷に供給される出力電圧を制御するための主要な機能です。 インダクタはPWM信号と同じレートで常に切り替わるため、出力に送られる電流にわずかなリップルを重ねる役割を担います。インダクタとキャパシタはLフィルタを形成し、これは基本的に2次のバンドパスフィルタです。十分に 大きくESRが低いキャパシタを使用すると、キャパシタは低インピーダンスを提供し、リップルを構成する高周波成分は大部分が取り除かれます。 バックコンバータ用のインダクタの選択方法 インダクタの適切な値は、設計が許容できるリップル電流と、PWM信号に使用する予定のデューティサイクルに依存します。以下の方程式は、ダイオードの順方向電圧降下とMOSFETを通過するON状態の電圧降下の関数としての出力電圧を示しています。これらの電圧を考慮した後、出力電圧は次のようになります: いくつかの数学をスキップして、重要な結果に直接移ります。まず、インダクタンスとPWM周波数はリップル電圧に反比例します。次に、リップルはPWMデューティサイクルの二次関数でもあります。バックコンバーターのリップル電流は次のようになります: PWM信号の立ち上がり時間はどちらの方程式にも現れません。しかし、立ち上がり時間は、 コンバーターから発生するノイズおよび損失(詳細は以下を参照)を決定する上で重要な役割を果たします。重要な結果は以下のようにまとめることができます: デューティサイクルを増加させるとリップルは減少しますが、出力電圧を入力電圧に近づけることにもなります。 PWM周波数を上げるとリップルは減少しますが、これによりMOSFETでの 熱放散が増加します。ただし、これには注意点があります。エッジレートが速いPWM信号を使用すると、高いPWM周波数からの損失が減少します(再度、下記参照)。 より大きな入力電圧を使用するには、リップルを許容レベルに減少させるためにより大きなインダクタを使用する必要があります。一般的に、リップルを減少させるためにはより大きなインダクタを使用します。 PWM立ち上がり時間が重要な理由 インダクタは、出力電流上のリップルを生成し、同時に抑制する役割を担っていますが、これは上記のガイドラインを使用して設計で設定できる設計目標とすることができます。しかし、インダクタが制御できないスイッチングレギュレータのいくつかの重要な側面があります: スイッチング要素からの放射EMI:このトランジスタからのスイッチングノイズは、下流回路にいくらかのノイズを誘導することがあります。 スキン効果による熱損失:これはインダクタの幾何学的形状の機能であり、インダクタンス値ではありません。インダクタがより大きな断面積と高い熱伝導率を持っている場合、インダクタからの熱がより高い速度で放散されます。 トランジスタの熱損失:トランジスタは、スイッチングと調整中に最も多くの熱を発散します。しかし、より速いエッジレートを使用することで、この熱損失を抑制できます。なぜなら、MOSFETがPWM振動の間により完全にオフに切り替わるからです。
Altium Need Help?