Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
パワーインテグリティ
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
パワーインテグリティ
パワーインテグリティ
リソースライブラリを参照して、PCB設計とパワーインテグリティの詳細をご覧ください。
How to Maintain Power Integrity in your PCB
Understanding the PCB Design Process
Power Analyzer by Keysight
PDN Analyzer
PDN Analyzer for DC Power Integrity
PDN Design for the PCB Designer
Overview
All Content
ウェビナー
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
電気技術者
PCB設計者
ソフトウェア
Altium Designer
Altium 365
Octopart
コンテンツタイプ
ガイドブック
ウェビナー
ホワイトペーパー
適用
APAC
ANZ
EMEA
組み込み型ソーラーシステム向けのPCB設計ガイドライン
1 min
Thought Leadership
旅行から戻って来た直後に、もう一度旅行に出掛けたいと思ったことはありませんか? 私にはそんな経験があります。前回のビーチリゾートでの休暇が、雷雨が続いたせいで台無しになってしまったのです。旅行の計画を立てるときは、予測できない天気というものがいつもジレンマになります。アウトドアで過ごす予定があればなおのことでしょう。 屋外での使用が想定される組み込み型のソーラーシステムを設計する際、私はこれと同じ慎重な姿勢で取り組みようにしています。こうしたシステムは、安定した電力供給で稼働する組み込み型のシステムとは完全に異なる難題です。例によって、私は苦労の末に慎重になることを学びました。というのも、最初に手掛けたソーラー式の試作は、1日でも雨が降ると稼働しなくなってしまったからです。 組み込み型ソーラーシステムについては考慮すべき状況がたくさんあり、太陽光のない状態で何日も稼働するように計画しなければなりません。 組み込み型ソーラーシステムの設計で考慮すべき要素 1. ソーラーパネル 言うまでもなく、ソーラーシステムで最も重要なの要素はソーラーパネルです。これについては、多結晶や薄膜よりも効率がよく、暑い気候でも優れた性能を発揮する単結晶を選択したほうがよいでしょう。パネルの中には最大22%の 太陽光を電力に 変換できるものもあります。とはいえ、単結晶や多結晶の効率はサプライヤーによって異なるため、事前に詳細情報を確認しておきましょう。 2. 電池の容量 組み込み型のソーラーシステムで重要なパラメーターは、ソーラーパネルの性能が0%になった場合のシステムの持続性です。環境要因によっては、ソーラーパネルに数日や数週間、太陽光が届かない場合もあります。そこで必要になるのは十分な容量のある 電池 です。また、ソーラーパネルの充電率が電池の使用率を上回るようにしておく必要もあります。5時間かけて充電した電池が2時間で消耗してしまっては、とても効率的とは言えません。 3. 太陽光の照射 考え方によっては、ソーラー技術はいたって単純です。太陽光がなければ電力は生成されません。ただし必ずしも、8時間分の太陽光で8時間分の電力が生成されるわけではありません。「 太陽光ピーク時間 」という用語がありますが、これは太陽が空の最も高い位置にあって、ソーラーパネルが一番効率的になる時間帯を指します。こうした要素について認識し、太陽光ピーク時間を算出しておくことが望まれます。
記事を読む
スイッチングとリニアの電圧レギュレーター: どちらが電力管理回路に最適か
1 min
Blog
目の前でコンデンサーが爆発したのを見たことがありますか? 私が電子機器の設計を始めたとき、まさにこれを体験しました。また私は、最初は「単純な」プロジェクトと設定されていたもので、パワーバジェットの計算に失敗しました。その結果、試作のPCBで電圧レギュレーターが、目玉焼きができるほど、またはもっと酷く真っ赤に焼けてしまいました。 それ以後に私は、設計の優雅さや洗練さはそれほど重要でないことに気付きました。電力管理回路の構成で間違いを犯せば、その設計は事実上無価値になってしまいます。パワーバジェットの計算、周囲の温度、そして私の事例では電圧レギュレーターなど中核の電力管理コンポーネントの選択が、PCBプロジェクトの成功を左右することがあります。 組み込みシステムにおける電力管理回路の機能 私は組み込みシステムの設計を10年以上行い、マイクロコントローラーの驚異的な進化を目にしてきました。マイクロコントローラーは、歴史的なZilogから今日のCortex M4プロセッサーまで進化してきました。Bluetooth LEやZiBeeなどのテクノロジーにより、組み込みシステム業界はさらに変革しました。しかし、電力回路を適切に設計する必要性は依然として変わっていません。適切な電力回路なしでは、このような優れたテクノロジーもただの「部品」にすぎず、しかも過熱し、溶けて燃えはじめ、悪臭を放つことになります。 コンデンサーを別として、適切に設計された電源回路の中心には必ず 電圧レギュレーター があります。その名前が示すように、電圧レギュレーターは安定した電圧を供給し、組み込みシステムが安定して動作できるようにします。電圧レギュレーターは高電圧の入力を受け付け、電子デバイスの動作に必要な電圧に降圧し、同時に安定化を行います。 3.3Vのコンポーネントが一般的になる前は、マイクロコントローラー(MCU)と集積回路(IC)はすべて5Vで動作していました。LM7805は単純な5Vのリニア電圧レギュレーターで、当時良く知られていた部品番号です。実際に、この製品は単純で極めて洗練されているため、今日でも一般的に選択されています。3.3Vが主流の動作電圧となったとき、LM1117-33が効率的なリニア電圧レギュレーターとして使われるようになりました。 リニア電圧レギュレーターの制限 集積回路が3.3V対応に移行した期間があり、この期間にマイクロコントローラーは急速に進化しました。設計者は従来、マイクロコントローラーの入力と出力の数を重視していました。その後で、UARTS、イーサネット、USBなどの統合された機能の数と、急速に増大していく処理能力に注意を向けるようになりました。やがて、リニア電圧レギュレーターは限界に直面することになりました。 これらの手軽なヒートシンクによって、リニアレギュレーターを冷却できます。 多くの人々は、リニア電圧レギュレーターを扱うとき、電流定格を絶対視するという初歩的な過ちを犯します。これが大きな問題となったのは、LM7805電圧レギュレーターの定格は5V、1.5Aだったためです。しかし、実際にこの電圧で扱うと、良くて一部のコンポーネントが溶け、悪ければプロセス内で燃焼が発生する恐れがあります。リニア電圧レギュレーターを選択するときは、最低でもあと3つのパラメーターを考慮する必要があります。 消費電力のレベルは、入力と出力の電圧差を考慮し、その値と負荷電流とを乗算することで計算できます。12Vを5Vにレギュレートし、組み込みシステムが100mAを消費するなら、消費電力は0.7Wです。これを念頭に、LM7805は最大125℃の温度で動作できることに注意します。この温度を超えると、溶解や燃焼など望ましくない現象が発生します。 しかし、TO-220パッケージの一般的なLM7805の熱抵抗は65℃/Wです。すなわち、周囲の環境温度に加えて、1Wごとに65℃だけ温度が上昇します。一部の地域では平均気温が約35℃なので、動作時のLM7805は100℃に達します。定格最大電流である1.5Aの10%未満しか使用していないにもかかわらず、許容される最大温度に近づくことになります。 スイッチング電圧レギュレーターが、文字通り冷静な選択である理由 リニア電圧レギュレーターは、その特性から 電力要件の大きい
記事を読む
高度なPCB設計ソリューションに必要な短期的および長期的なEDAソフトウェア
1 min
Thought Leadership
私の祖父は、仕事には常に適切な工具を使用するようにと教えてくれました。私がこれを教えられたのは、祖父のネジ回しをてことして使って壊してしまったときのことです。祖父には申し訳なく思っております。不適切な器具を使用しても、壊してしまうことはないかもしれませんが、作業の完了に多くの時間を要することは間違いないでしょう。PCB設計にも同じ原則が当てはまります。基板がますます複雑化していくにつれ、基板を構築する設計者にはより高度なツールが必要になります。これまで使用していた古いプログラムを使い続けることは可能ですが、多くの時間を浪費することになり、出来上がる設計も最高のものとはならないでしょう。高密度相互接続(HDI)、熱管理、 高速PCBの設計はいずれも特化したツールが必要な分野です。役に立つツールは多くの開発者から提供されていますが、ドキュメントとトレーニングが充実しており、すぐに習熟して使いこなせるようなソフトウェアを選ぶべきです。短期的な速さに加えて、長期的な見返りも必要です。機器もまた投資であり、自分の要求とともに成長するツールを選ぶ必要があります。 高度な技法 ハンマーを持っている人は、全ての問題を釘と考えるものです。PCB設計においても、この考えを適用し、高レベルの基板に対して低レベルまたは中レベルの設計ツールを使用したくなることがあります。このような方法でもなんとか作業は行えることはありますが、最良のツールでなければ役に立たない状況も珍しくありません。HDI基板、熱管理、および高速回路を取り扱うときは、可能な最高の基板を作成するために特定のツールが必要となります。 ● HDI - ブラインド、ベリード マイクロビア ファインピッチボールグリッドアレイ ● 熱管理 - 1 電源供給ネットワーク解析ツール アクティブ パッシブ冷却 ● 高速設計 -
記事を読む
PCBレイアウトソフトウェア比較に最も重要な機能
1 min
Thought Leadership
掘り出し物を見つけようと思って、中古車販売店に行ったことがありますか? 整備工でもなければ、ほとんど不可能です。私の場合、値段を除いて、自分にはほとんど同じに見える2台の車から選ぶことになりました。安い方を選んで、近くの整備工場に持って行くと、ぽんこつを選んだことが分りました。PCB設計ソフトウェアを選ぶときにも、同じ気持ちになることがあります。無料のプログラムを使用して、または中級のプログラムを購入して、自分が必要とするものには、ほど遠いことが分ったときです。電子設計自動化(EDA)ツールを決める前に、基板の設計に必要な高度な機能をサポートするか、確認する必要があります。また、自分特有のニーズに合うようカスタマイズできる統合環境で、これらの全ての要素が利用できることも重要です。 探すべき機能 私は、値段だけで車を選びました。もう一方の車と見た目は同じなのに、数千ドル安かったのです。結局、値段相応だと分りましたが、このことは、ECADソフトウェアにも当てはまります。たぶん、PCBの設計に、より安い、できれば無料のソフトウェアを使用したいと考えるでしょう。オプション機能の足りない点が、安い類似ブランドの問題点です。PCB設計が複雑になるにつれて、これらの「オプション機能」が必要になってくるのです。設計プログラムを選ぶ際に探すべきものをいくつか示します。 基板サイズ - これは当然ですが、挙げておきます。無料ツールの多くでは、基板スペースが厳しく制限されています。ソフトウェアが、回路に十分なスペースをサポートしているか確認してください。 高度なビア設計 - 高密度相互接続(HDI)基板や高速基板などを設計している場合、これは非常に重要です。 ブラインドビアやベリードビア 、 ビアインパッド(VIP) 、 マイクロビア 、 バックドリル加工 などの使用が必要になります。これらの機能のサポートは、低価格帯のソフトウェアには含まれない場合があります。必要であれば、利用できることを確認してください。 レイヤーの数 -
記事を読む
設計の複雑さが増すにつれて最高のプロフェッショナル向けPCB設計ソフトウェアが要求される理由
1 min
Thought Leadership
子供のころの生活は単純だったなと思い返すことがありますか? 仕事もなく、ローンもなく、自分の子供と口論することもありませんでした。私の主な役割は表で駆け回り、遊んでいる間に泥だらけにならないようにすることでした。今の生活は確かにあの頃より良いものですが、同時にはるかに複雑になりました。それと同様に、PCB業界も成長し、 より複雑なものとなりました 大きくて単純な基板はもうありません。今では全ての回路が小さく、洗練されており、ときにはフレキシブルである必要があります。このような業界の動向から、設計者はレイアウトや回路図の作業だけでなく、何でも行える技術者であることが要求されています。このため、リジッドフレキシブル設計、ECAD/MCADコラボレーション、関係者との協力、電源供給ネットワーク解析(PDNA)などを行うため、最高のソフトウェアを常に利用可能にしておくことが重要です。 リジッドフレキシブル設計 子供の頃の私はずっと体が柔らかかったのですが、今では爪先に触れるのもやっとです。一方でPCBはその逆に、業界の成熟につれ、より柔軟になりつつあるようです。 多くの種類の製品 でフレキシブル設計が推進されていますが、中でも主な分野は モノのインターネット(IoT) と ウェアラブル です。これらの種類のデバイスは変わった外形をしていることが多く、しかも容積の制約が厳しいのが普通です。このような用途には、フレキシブル、またはリジッドフレキシブルの基板が最適です。 しかし、フレキシブル基板の設計は、口で言うほど簡単ではありません。材質、配線、フレキシブルとリジッドフレキシブルのどちらを使用するか、取り付け方法など、 膨大な数の要素 を考慮する必要があります。適切な基板を設計するには、これら全ての要素の設計に役立つソフトウェアが必要です。優れた設計ソフトウェアには、材質や設計技法についての 詳細なドキュメント が付属しています。また、 レイヤースタックを把握 し、基板の 3Dクリアランスを確認
記事を読む
組み込みシステム向けのリン酸鉄リチウムバッテリーとリチウムイオンバッテリーの比較
1 min
Blog
この(比較的)新しい出会い系アプリTinderをご存じですか?私はまだ独身で交際相手がほしいので、試してみることにしました。まず、人の写真と経歴がランダムに出てくるので、気に入ったら右にスワイプ、気に入らなければ左にスワイプします。自分が右にスワイプし、相手も右にスワイプすると、お互いにチャットできます。試してみて、写真ばかり見ないで経歴を読むのにもう少し時間を割けばよかったと思いました。「マッチング」相手とチャットをしてみたら、写真を見て湧いた興味が冷めてしまったんです。組み込みシステムの場合も、特にバッテリーに問題があると同じように感じることがあります。たとえば、膨大な時間をかけて設計した基板なのに、バッテリーの劣化が早すぎたり、温度の問題で故障したりする場合です。最悪の場合、バッテリーから火花が出ることさえあります。私は交際相手のマッチングはできませんが、ボードに合ったバッテリー選びをお手伝いすることはできます。組み込みシステム向けの最も一般的な選択肢は、リチウムイオンバッテリー(Li-Ion)とリン酸鉄リチウムバッテリー(Li-phosphateまたはLiFePO4)の2つです。これら2つのタイプは、充電特性と放電特性がかなり異なります。どちらでも使用できる場合もありますが、どちらかがもう一方より適している場合が普通です。続きを読んで、どちらのタイプが皆さんの用途に最適かを判断してください。 リチウムイオンバッテリー 英語の「love」にはさまざまな意味があります。私は「I love my iPhone(iPhoneが大好き)」とも、「I love my girlfriend(彼女を愛してる)」とも言います。これらの「love」は、いくつか重要な点で意味が違います。同じように、一口に「リチウムイオン」と言っても、リチウムイオンバッテリーの種類が異なる場合があります。ここで述べるのは、ほとんどの場合がコバルト酸リチウム(LiCoO2)です。このリチウムイオンバッテリーは、アノードにグラファイトを使用しています。では、 リチウムイオンバッテリーの仕様を見てみましょう。 電圧: 公称3.6 V、範囲3.0 V ~ 4.2 V 比エネルギー: 150 ~
記事を読む
パワーインテグリティーにまつわる5つの俗説
1 min
Thought Leadership
パワーインテグリティーは新しいものではありませんが、現在ますます注目が高まっており、今後も関係者の一番の関心事であり続けるでしょう。製品の高速化と小型化の傾向が継続するなか、もはや1 ミリも無駄なスペースはありません。設計はこの事実を踏まえて進める必要があるでしょう。業界に2 ~3 年以上従事されている方であれば、パワーインテグリティーに関する下記の俗説を耳にされたことがあるかもしれません。 銅箔を使え 皆さんは、「銅箔は使えば使うほどよい」と教えられたかもしれません。銅箔の流し込みを行うだけで、パワーインテグリティーに関連する問題は、すべてとは言いませんが、その大半が解決します。ただし、これに当てはまらない場合もあります。たとえば、熱に関係する問題は解決するものの、浮島や半島が残るといった他の問題を引き起こす場合です。無害に見えるものの、浮島や半島は特定の共振周波数を持っており、一定の状況下で障害を引き起こします。こうした障害はランダムに現れることもあるため、正確に特定して修復することは極めて困難です。これを呪いか何かのせいにする前に、銅箔の流し込みによって浮島や半島が発生していないかどうかを必ず確認しなければなりません。それを怠ると、設計を断念して、レイアウトをやり直すはめになります。 他に考慮すべきことはコストでしょう。これはエンジニアの頭にいつもあることではないかもしれません。銅箔は安価なものではありません。特に予算の制約がある今、やみくもに余計なプレーン層を追加するわけにはいきません。過大設計は高額になってしまいます。 IPC-2152は絶対に外さない これは皆さんが驚かれることかもしれません。確かにIPC-2152 は重要であり、許容範囲の温度上昇に対して配線幅を最小化するという手段で問題を回避する際の手引きとなります。ただし、そのためにIPC-2152 を適用すると、電力配電回路網に必要以上のスペースを割り当てざるを得なくなります。つまり、貴重な面積が占領され、設計のレイヤーが増えてしまいます。 IPC-2152 はいつでも使える優れたツールであり、効率的な電源供給の設計には有効ですが、むやみに適用すべきではありません。パワーインテグリティーツールとともにIPC-2152 をもっと慎重に使用すれば、電力配電回路網の面積を削減しながら、製造に向けて安全に設計を進めることができます。 ビアが多くなり過ぎることはない 精通している方であればお気づきかもしれませんが、IPC-2152 はビアとなるとあまり適切ではありません。配線幅と同様に、IPC-2152 はかなり保守的であり、基板には大きめのビアが必要以上に形成される可能性があります。銅箔に大きな穴が開いてしまっては問題でしょう。つまり、電流が使う面積が減るために電流密度が増加し、結果として温度が上昇します。それだけでなく、残りの設計に割り当てられるはずの面積が奪われ、特に最後の10% の基板の配線を完成させるのが困難で時間のかかる作業になってしまいます。他のIPC-2152
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
5
ページ
6
ページ
7
ページ
8
現在のページ
9
ページ
10
Next page
Next ›