Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Professional Training Courses & Certificates
Training Previews
On-Demand
Instructor-Led Trainings
大学・高専
Education Programs
Educator Center
Student Lab
Altium Education Curriculum
オンラインストア
Search Open
Search
Search Close
サインイン
プロジェクト管理
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
プロジェクト管理
Overview
All Content
Filter
0 Selected
Content Type
0 Selected
全て
Software
0 Selected
全て
Clear
×
Clear
0 Selected
Content Type
全て
6
ビデオ
1
ホワイトペーパー
4
ソートリーダーシップ
1
0 Selected
Software
全て
4
Altium Designer
2
Concord Pro
2
Thought Leadership
Altium Designerを使用したPCB設計ソフトウェアでの部品表の作成
ついに、回路基板ができあがり、PCBを実装する準備が整いました。回路図が完成し、レイアウトの確認と承認が済み、いよいよ組み立てです。ただし、そのためには部品表を作成する必要があります。幸い、それらのドキュメントを手作業で作成したのは遠い昔のことです。どのCADシステムでも、部品表は、ライブラリやその他のプロセスによって自動的に作成されます。しかし、そのためには何をする必要があるでしょうか? Altium Designer 18を使用すると、部品表(BOM)を非常に簡単に作成することができます。さまざまなオプションを選択して、非常に直感的な特定のニーズに応じて情報を構成したり整理したりできます。ここでは、設計から簡潔なBOMレポートを作成するために必要な手順について説明します。 部品表の準備 例として、いくつかの部品で構成される非常に単純な設計を取り上げます。これにより、画面に収まらないような部品表ではなく、簡潔で扱いやすいレポートができます。 Altium Designerでは、回路図、レイアウト、ActiveBOM(設計内のコンポーネントに直接アクセスするためのツール)のいずれかからBOMを作成することができます。BOMレポートの生成機能には、これらの3つの設計オブジェクトで同じメニューを選択してアクセスできます。3つの設計オブジェクトのいずれかをアクティブな状態にして、[Reports] ≫ [Bill of Materials] を選択します。3つのオブジェクトには若干の違いはありますが、下図のようにBOMレポートメニューは基本的に同じです。 Altium Designerの回路図、レイアウト、Active BOMのBOMレポートメニュー Altium Designerでの 回路図の作成やレイアウトの作成には慣れていても、ActiveBOMを使ったことがない場合もあるでしょう。ActiveBOMは、回路図やレイアウトと同様の、別の設計ポータルです。違いは、接続データ(配置と配線)を操作するのではなく、基板設計内の コンポーネントデータを直接操作する点です。ActiveBOMで作業するには、最初に、下図のように
Thought Leadership
Altium Designer: PCB設計でプロジェクトテンプレートを使用するメリット
馬の家畜化、車輪の発明、燃焼機関の開発は、人間がより効率的にあちらこちらに移動したり新しい場所を探検したりできるようなるという点で称賛できる、非常に画期的なできごとです。慣れた環境から見知らぬ場所に出ていくための自信を多くの人に与えるという点で、少なくとも同じくらいの称賛に値するもう1つの発明があります。それは地図です。自分より前に誰かが道を通ったということがわかっていると、目的地にたどり着く自信が持てます。 PCB設計は、試行錯誤で埋め尽くされる可能性のある創造的なプロセスです。このプロセスからエラーを取り除くことは実質的に不可能ですが、プロジェクトテンプレートを使用することで最小限に抑えることはできます。最も基本的なところでは、プロジェクトテンプレートは実際上、以前に設計された回路の「地図」です。自信を持って、これを新しい設計のベースとして使用することができます。Altium Designer 18ではこの基本概念が拡張されていますが、PCB設計でプロジェクトテンプレートを使用する多くのメリットに注目する前に、プロジェクトテンプレートをさらに詳しく定義し、作成方法を確認しましょう。 プロジェクトテンプレートとは プロジェクトテンプレートは単に、以前に作成された設計で、似たようなPCB、PCBモジュール、個々のコンポーネントの設計に必要とされる作業を減らすために使用されます。PCBレイアウトを通して、基板を作成することが必ずしも骨の折れる生成プロセスである必要はありません。既に回路基板が作成されている場合、作業はもっと楽になるかもしれません。テンプレートをそのまま使用することも、設計の特定要件に合致するようテンプレートを変更することもできます。 マルチチャンネルデザインでの回路の再利用と同様です。 マルチチャンネルデザインの場合と同じく、プロジェクトテンプレートは、効果的に活用できるよう、技術者、PCB設計者、チームや組織の他のメンバーが簡単にアクセスできる必要があります。回路構成、フットプリント、テンプレートのいずれで構成するにしても、以前に使用した基板設計のデータベースを用意すれば、チーム全体のプロセスを迅速化できます。 ただし、Altium Designerが提供するソフトウェアは、通常プロジェクトテンプレートが置かれるAltium Vaultのような管理サーバーの任意の場所にテンプレートを格納できる柔軟性を備えています。サーバーを使用することで、一元化されたファイル格納場所だけでなく、適切に構成された管理アーキテクチャーも提供されます。これは、セキュリティおよびアクセスレベルの特定性の維持のために重要です。 優れたPCB設計ソフトウェアにより、頼れる基板およびプロジェクトテンプレートのディレクトリにアクセスできます。以下の図1は、Altium Vaultに格納されているプロジェクトテンプレートのディレクトリ構成の例です。 図1 プロジェクトテンプレートのディレクトリ構成 上図のように、プロジェクトテンプレートは、個々のコンポーネント、シート(モジュール、回路図、PCB)、または設計全体(全てのコンポーネント、回路図、およびPCB)として分類し、格納できます。プロジェクトテンプレートは通常、履歴、リビジョン、コード、その他のドキュメントなどの関連ファイルとともに格納されます。したがって、情報およびデータは全て、テンプレートにアクセスすることで1か所から表示/ダウンロードできます。 プロジェクトテンプレートの作成方法 1回のみ使用するデザインとプロジェクトテンプレートの違いは、設計ファイルの格納場所と格納方法にあります。PCBを設計する場合、通常は、プロジェクトディレクトリの下に全ファイルを格納し、1か所から全てのプロジェクトファイルに簡単にアクセスできるようにします。コンポーネントやシートを検索するには、設計ファイルがどのプロジェクトに存在しているかを知っておく必要があります。回路基板のニーズの変化により、この方法による設計の再利用がすぐに続けられなくなることは明らかです。 したがって、再利用したい設計を検索する、より単純でアクセスが簡単な手段が必要です。Altium Designerでは、プロジェクトテンプレートはテンプレートディレクトリ構成に格納されます。実際のファイルは、具体的なプロジェクトディレクトリ名を思い出さなくても、ここから簡単に表示し、アクセスできます。プロジェクトテンプレートの作成と格納場所への追加は、3つのステップで完了できます。
Thought Leadership
ペースメーカーを用いたPCB基板内蔵アクティブコンポーネントの探求
アメリカ合衆国では年間20万台のペースメーカーが埋め込まれており、心臓の異常を修正する手術プロセスは日常的なものとなっています。プロセスの準備をする際、心臓専門医は最適な埋め込み方法を決定するために3種類の切開方法から選択します。各切開方法は、患者の快適さと手術に伴うリスクの程度に影響を与えます。 切開は静脈へのアクセスを提供し、ペースメーカーのためのスペースを割り当てます。心臓専門医は、人間の組織から形成されたポケット内にデバイスを囲むことでペースメーカーを埋め込みます。外科医は、切開後に一本または二本の指を使って肉質の組織を優しく広げることで、皮膚のすぐ下の組織層内にポケットを形成することを選択できます。 別の方法として、ペースメーカーを胸筋の下に配置することがあり、これは主要な筋肉に浅い切開を入れることから始まります。この技術は、ポケットを作成するための鈍的な解剖で終わります。どちらの場合も、傷の閉鎖と治癒プロセスにより、組織がペースメーカーを包み込むことになります。 ペースを保つ マイクロコントローラー、MOSFET、電圧レギュレーター、 集積回路などのアクティブコンポーネントをPCBの基板内に埋め込むコンセプトは、人間の体内にペースメーカーを埋め込むプロセスと鏡像のようなものです。統合モジュールボード技術を使用すると、SMTコンポーネントは従来の硬質基板の表面にあるキャビティに埋め込まれます。 技術の進歩により、キャビティのサイズがより正確になり、PCB設計では、コンポーネントの寸法に対応するさまざまなキャビティ形状を取り入れることが可能になりました。誘電体材料を除去するためにレーザーを使用することで、位置精度と正確なキャビティの深さを実現します。小さく精密なフライス加工やルーティングツールも、コンポーネントに対する厳密な許容誤差を持つキャビティを製造するために必要な制御を提供します。 コンポーネント、基板、およびビルドアップ材料の間には、適切な回路動作のために、機械的、化学的、電気的な互換性が存在しなければなりません。コンポーネントを整列させて配置した後、次のステップは、等方性のはんだを含む成形ポリマーでキャビティを充填することです。ポリマーとはんだの混合物は互換性を保証します。コア基板を樹脂コーティングされた銅でラミネートすることで、マイクロビアの製造が可能になります。 強力なPCB設計ソフトウェアを使用すると、ビア製造を追跡するのに役立ちます。 埋め込みウェーハレベルパッケージング(EWLP)、埋め込みチップビルドアップ(ECBU)、チップインポリマー(CIP)プロセスは、製造中にアクティブコンポーネントを多層PCB内に完全に埋め込むことを可能にします。誘電体材料にキャビティをドリルで開けるのではなく、第二の埋め込み技術は、薄いウェーハパッケージをビルドアップ誘電層に直接配置します。 薄いパッケージのダイは基板に接合された後、PCBメーカーは液体エポキシまたは樹脂コーティングフィルムをダイ電材として適用し、コンポーネントを基板に成形します。EWLPはファンインを必要とし、ウェハーレベルで始まりますが、ECBU方法では、アクティブコンポーネントを完全に硬化したポリアミドフィルムの上に面を下にして取り付け、次元安定性のためにフレームに取り付けられ、ポリマー接着剤でコーティングされます。その後、メーカーはインターコネクト構造を構築します。 CIP方法は、一方で、薄いコンポーネントをコア基板の上に直接配置し、チップを接着剤で接合し、PCBのポリマー蓄積層にデバイスを埋め込みます。レーザードリリングは、コンポーネントの接触パッドへのビアを確立し、埋め込まれたアクティブコンポーネントの直上に受動デバイスを直接取り付けることを容易にします。 人生は試練に満ちている 心臓専門医はペースメーカーが機能すると仮定できません。ペースメーカーのインプラントにおいて心室および心房リードの配置が行われた後、心臓チームはペーシングチェックを実施します。ペーシングチェックの一部には、「境界電流」、つまり体の中心部から損傷した心臓への電流を確認することが含まれます。大きな電流は、リード先端電極と心筋との間に良好な接触があったことを示します。 それから、ペーシングチェックは、適切なミリボルト感知信号、正しいインピーダンス、適切なペーシング閾値、およびリード接続の安定性をテストします。これらのテストはそれぞれ、ペースメーカーが心臓の固有のリズムを感知し、心室を正しくペースし、心筋組織を電気的に捕捉するために必要なエネルギーを提供することを保証します。 組み込みアクティブコンポーネントも同様に徹底的なテストアプローチを必要とします。組み込みによりコンポーネントとPCBのサイズが小さくなることは利点をもたらしますが、プロセスによって欠陥が生じる可能性があります。小さく薄いはんだ接合部は割れることがあります。不適切な量のはんだペーストや誤ったはんだ付け温度も、弱い結合や断続的な接続を引き起こす可能性があります。 PCBのサイズを小さくすると、トレース間のショートサーキットの可能性が高まる場合があります。PCBにかかる機械的ストレスは基板を割れさせることがあり、はんだ付け中の表面張力の増加はトゥームストーニングを引き起こすことがあります。 これらの可能性を考慮すると、テストルーチンでは、オープントレース、トレース間のショートサーキット、およびマイクロショートをチェックする必要があります。埋め込みプロセスにはしばしば熱と真空圧が関与するため、変形したトレースや非導電性のビアもチェックするべきです。また、アクティブコンポーネントに対して機能的な低電圧テストを使用することも望ましいでしょう。新しいバージョンのフライングプローブテスターは、各側に4つのプローブを提供し、組み込みアクティブコンポーネントに対して包括的な機能テストを実行できます。 回路設計を行う際に適切なテストルーチンを確保することは、長い目で見ると手間を省くことができます。 これにはもう一つの側面があります
Thought Leadership
PCB設計内に割り当てられたテストポイントの検索とレポート
学校のテストでも運転免許のテストでも、仕事で日常的に口にする類のテストでも、「テスト」という語は、普段落ち着いている人を不安な気持ちにさせる可能性があります。反対に、テストに関わりがなければ同じ人でも明らかにリラックスしています。おそらく、PCB設計者は、自分の設計へのテストポイントの割り当てを終えると、大きな安堵のため息をつくでしょう。ただし、テストポイントを割り当てただけでは作業は終わりではありません。 PCB設計でのテストポイントの割り当ては、プロセスの前半部分に過ぎません。割り当て後は、テストポイントの割り当てを検証して、テストポイントの情報をレポートする必要があります。幸いAltium Designerには、テストポイントをチェックする高度なDRC機能と、テストポイント情報を使いやすいファイルに出力するためのユーティリティが用意されています。テストポイント割り当て後のそれらの手順の進め方について、以下で説明しましょう。 テストポイントの設定と割り当てのおさらい ここでは、製造中に自動的に行われるテストで使用される、プリント回路基板のテストポイントについて復習します。ベンチテストを実行するために技術者に提供されるPCBのテストの位置については説明しません。自動的に割り当てられたテストポイントの位置は、bare-board(製造)テストと、基板の組み立て後に行われるin-circuitテスト(ICT)の両方で使用されます。 Altium Designerには、テストポイントとしてビアおよびパッドを割り当てる機能があります。この割り当ては、特定のビアまたはパッドの属性を変更することにより手動で行うか、Testpoint Managerを使って自動で行うことができます。Testpoint Managerには、テスト対象のネット、テストポイントの候補とすべき特定サイズのビアまたはパッド、テストポイントのグリッド、その他のオプションなど、テストポイントの制約に関する設定があります。 Testpoint Managerを動作させるには、テストポイントのデザインルールを設定しておく必要があります。このルールは、後続の手順で行うテストポイント割り当ての検証にも適用されます。テストポイントの設定および割り当ての詳細については、 Altium DesignerでPCB設計のテストポイントを使用する方法をご覧ください。 割り当てられたテストポイントの検証 テストポイントを割り当てた後は、それらを検証して確認する必要があります。Altium Designerは、テストポイントのスタイルとデザインルールで設定した使用ルールに沿って、テストポイントの割り当てをチェックします。テストポイントのチェックは、製造担当に基板を送る前に実行する必要があるもう1つのDRCです。 テストポイントの割り当て後に基板を編集した場合、何らかの形でテストポイントに影響を及ぼした可能性があります。設計を次のフェーズに移行させる前に全てをチェックしておくことはよい設計習慣です。 テストポイントの割り当てについての最初の記事と同じ設計例を使用して説明します。 最初に行うのは、検証プロセスを実際に実行するためのエラー条件を組み込むことです。テストポイントの候補が全てオフグリッドのスルーホールパッドだったので、テストポイントのグリッドの使用はオフにしていました。エラーを見つけるため、テストポイントのグリッドを以下のように表示します。テストポイントのデザインルールは、[Design] ≫
Thought Leadership
簡単なプロセスのための設計:任意のコンポーネントにサプライヤーデータを作成してリンクする
Altium Designerを使った経験がある方なら、この強力なライブラリプラットフォームの使いやすさとシンプルさにすでに馴染みがあるでしょう。しかし、これらのライブラリを使っていると、時には自分で手を汚さなければならないこともあります。たとえば、単純な部品番号の変更であったり、いくつかの重要なパラメーターを再設計することであったりしますが、編集は瞬時に簡単に更新できます。 この具体的な例では、プロのデザイナーの設計旅路でよくあるシナリオを見てみましょう:これらの統合ライブラリ内のコンポーネントにサプライヤーリンクデータを追加します。しばしば、お気に入りのサプライヤーやベンダーから特定の部品を頭に描いています。しかし、これらのコンポーネントは現在使用しているライブラリには存在しないかもしれません。ライブラリに入り、手動で情報を追加および編集する必要があります。 アンプ回路設計を例に取り上げて作業します 以前の記事では、プロトタイピングの準備が整ったと仮定する非常にシンプルなアンプ回路設計について探求しました。 回路図を作成し、基板の形状を決め、いくつかの コンポーネントのフットプリントを配置しましたが、それらは プロトタイプ/ガーバーに適しています。今回は一歩戻って、すべてのライブラリサプライヤーデータが正しく、最新の情報で満たされていることを確認しましょう。 サプライヤー指定のデータリンクの追加 この例では、標準のAltium Designer管理データベースで一般的なLM386 ICを見つけることができると思います。しかし、使用する予定のスピーカーは特定の部品なので、手動で追加する必要があります。これをどのように行うか見てみましょう。 LM386を検索するのは簡単です。インターフェースの右下隅にある「Panels」に移動し、「Part Search」を選択します。 そこにいると、既にインストールされているライブラリを検索して、探しているものを見つけることができます。LM386の検索結果では、リンクするためのいくつかのオプションがあります。 Digikeyがファンのお気に入りであるため、「Add Supplier Link and Parameters
Thought Leadership
PICマイクロコントローラのプログラミング基礎
子育てから学んだことが一つあります:子供に何かを教えることは非常に難しいことがあります。彼らが非常に興味を持っていて、世界中のすべての時間とリソースを持っていても、子供が学ぶ準備ができていないか、いくつかの重要な構成要素が欠けている場合、彼らはそのスキルやレッスンを理解できないかもしれません。 幸いなことに、PICマイクロコントローラユニット(MCU)のプログラミングは、かなり簡単です。適切なプログラミングツール、回路、および機能的なファームウェアを使用すれば、プログラマーはPICマイクロコントローラを正確に望み通りの動作をさせることができます。もちろん、後々の不必要な手間やフラストレーションを避けるためには、いくつかの重要なステップに従うことが依然として重要です。 PICマイクロコントローラ Arduino、Raspberry Pi、BeagleBoneのようなシングルボード組み込みコントローラーの出現にもかかわらず、PICマイクロコントローラーは今でも電子エンジニアの間で関連性を保っています。Microchipによって製造されたPICマイクロコントローラーは、使いやすさ、多様な機能、コスト効率の良さで特徴づけられています。PICマイクロコントローラーのプログラミングは、シンプルな 8ビット MUCから強力な32ビットモデルまで幅広いです。 PICマイクロコントローラーの多様性は、エンジニアだけでなく趣味で使う人たちにも人気を博しています。広範囲の周辺機器、メモリ、処理能力はほぼどんなアプリケーションにも適しています。プログラマーはおそらく、自分の洗濯機や警報システムにPICマイクロコントローラーを見つけるでしょう。 マイクロコントローラをプログラムするためにプログラマーが必要とするツール PICマイクロコントローラのプログラミングは、10年前と比べて今はかなり簡単になりました。以前は、PICマイクロコントローラの低価格帯のものには、ファームウェアを注入するために専用のPICプログラマーハードウェアが必要でした。しかし、今日PICマイクロコントローラを始める場合、マイクロコントローラにファームウェアをダウンロードするプロセスは通常、簡単なものです。 これらは、今日PICマイクロをプログラムするためにプログラマーが必要とするツールです: 1. MPLAB X IDE MPLAB X IDEはMicrochipから提供される包括的な開発環境です。PICマイクロコントローラをプログラムする前に、ファームウェアを書き、コンパイルしてビルドするためにMPLAB Xが必要になります。過去に支払う必要があった高価なIDEとは異なり、MPLAB X
Pagination
First page
« First
Previous page
‹‹
ページ
7
現在のページ
8
ページ
9
ページ
10
ページ
11
ページ
12
Next page
››
Last page
Last »
💬
🙌
Need Help?
×
📞
1-800-544-4186
📞
1-858-864-1798
✉️
sales.na@altium.com
🛟
Support Center
📣
Ask Community
📞
Contact Us