Layer Stackup Design

Implement any kind of layer stack for both rigid and rigid-flex PCBs.

Component Management Made Easy

Manage your components, get real-time supply chain data, access millions of ready-to-use parts.

リジッドフレキシブル基板設計

The Necessity of Multi-Board System-Level Design Altium Designerが実現する新しいマルチボードPCB設計 市場の要求が高まって設計スケジュールが短縮されているものの、マルチボード設計などの次世代テクノロジーが搭載されたAltium Designerはすぐ効果を発揮します。 Altium Designer 専門家のための強力かつ最新で使いやすいPCB設計ツール 長年の間、標準的なシステム設計のワークフローは、個々のPCB設計を開発し、構築された試作をシステムのモックアップに物理的に適合させるためのものでした。現在の複雑な設計に対する需要によって設計スケジュールが短縮されて予算が削減されている中、システムの回路基板の問題をデバッグするための継続的な試作にかかる時間と費用が原因で古いワークフローは行き詰まりを迎えています。 システム設計を成功させるには、すべての基板を連携させたうえで適合性と接続を検証する必要がありますが、これをタイムリーかつ生産的に完了させるにはどうすればよいでしょう?プリント回路にすべてのレイヤーが組み込まれた状態でマルチボード アセンブリを行うと、コンポーネントやトレース、銅箔、コネクタの追跡という困難な作業が、製造段階ではさらに困難になります。マルチボード アセンブリ技術が搭載されたAltium Designerは、この問題を確実に解消します。 複数のシステムPCB設計の回路図とレイアウトを組み合わせることで、現在の画面でそのレイアウトを3Dで表示して適合性と接続をチェックできるようになります。Altium Designerのnative 3Dエンジンと高度なマルチボード機能では、試作を作成する前に、各基板の問題を特定して修正できます。時間とコストを節約し、競合より先に設計を完成させるためにはAltium Designerが不可欠です。 フル3Dのマルチボード アセンブリ Altium Designerには、マルチボードシステムの設計を時間どおりに予算内で完成させるために必要な機能が揃っています。回路図を組み合わせて1つのマルチボード回路図にすることで、個々の設計をすべて接続できます。レイアウトではこうした接続をマルチボード アセンブリで使用して、各基板が意図したとおりに接続されているかどうかを検証できます。 native
Altium Designerでの多層PCBスタックアップの計画 近年のPCBが、単層や2層の基板で設計されることはほとんどありません。最新のPCBでは高密度の接続と多数のコンポーネントが使用されており、これからの設計は多層PCBになっていくと考えられます。手掛けるデバイスのフォームファクターがかつて見たことのないものであれば、リジッドフレキシブル基板を使用することになるでしょう。こうした種類のPCBには、適切なスタックアップが不可欠です。つまり、直感的なスタックアップ マネージャーを備えるPCB設計ソフトウェアが必要になりますが、Altium Designerではマルチレイヤー スタックアップを直接、PCBレイアウトに簡単に同期できます。 Altium Designer マルチレイヤー スタックアップの管理ツールを備えるPCB設計ソフトウェアパッケージ マルチレイヤーのスタックアップの最適な方法は、数々の要素によって変わってきます。特定の方法がなければ、あらゆる設計や配線、EMCの要件に同時に対処できます。多層PCBのデバイスのアプリケーションによっても、レイヤースタックアップの最適な方法は決まります。Altium Designerの統合設計環境では、優れたスタックアップ ツールからレイアウト、シミュレーション、ルールチェックの機能を直接使用できます。 マルチレイヤー スタックアップの計画 どんな回路基板でも、コンポーネントや銅箔の配置に関して計画を立てなければなりません。単層のPCBでさえ、レイアウトに関する計画がなければ製造にリリースできません。PCB設計では、回路の設計が終わるまでコンポーネントの配置に常に注意を払う必要がありますが、これは多層PCBにも当てはまります。両面PCBや多層PCBでは、ベリードビアの穴を追跡したり、厚さや外層について計画したりすることができます。 今後の多層PCBのスタックアップ方法を計画する際は、信号プレーンとパワープレーン/GNDプレーンの繰り返しになり、各レイヤーが絶縁コアかプリプレグで分離されることが一般的になるでしょう。リジッドフレキシブル基板は本質的に多層基板であり、それぞれにスタックアップの要件があります。その目的はレイヤー間のクロストークとEMIを抑制すると同時に、効率的な配線を可能にすることです。 多層PCBのスタックアップ方法 多層PCBの設計は技であり、芸術でもあります。設計全体のプロセスは、レイヤーの配置によって変わってきますが、レイヤー間を配線するためにビアを使用し、適切なパワープレーンとGNDプレーンのペアの配置を選択して、製造業者向けの情報をすべて含めた書類を作成する必要があります。これらは、優れたレイヤー構成マネージャーを備えるPCB設計ソフトウェアがなければ完了できません。 スタックアップの各レイヤーにはそれぞれの機能がありますが、これらはマルチレイヤー スタックアップで指定する必要があります。 マルチレイヤーのスタックアップ方法について、詳しくはこちら
Altium Designerによる円形や曲線状のPCB設計 現代の生活は、電子機器なくして成立しません。まるで、家にあるもの全てをPCBに配線する最初の人間になる競争をしているかのようです。デバイスの形状やサイズがきわめて多岐にわたってきており、円形のPCBがいっそう普及しています。円形のPCBで次のデバイスを設計したいとお考えなら、四角形のPCBを前提とした作業に制約されないCAD/レイアウト ツールを備えた設計ソフトウェアが必要です。 Altium Designerで作業すれば、PCBのフットプリント/レイアウトを全面的に制御できるようなり、あらゆる形状、サイズのPCBを構築できます。 Altium Designer 曲線状や円形のPCBに対応する、優れたレイアウト ツールを備えたPCB設計ソフトウェア パッケージ PCBがかつてないフォームファクターに対応し、いっそう高度な機能を必要としているため、設計方法もこのような変化に着いていかなければなりません。次の電子機器が円形のフォームファクターなら、円形のPCBを使用することで基板スペースが広がり、四角形の基板をいくつも使用するよりも望ましいといえます。特定のアプリケーションに応じて、多くの他のデザインルールや方法を実行する必要もあるでしょう。優れたCAD/レイアウト ツールを備えたPCB設計ソフトウェア パッケージを使用することで、次の円形のPCB設計がスムーズに行えます。 円形や曲線状の設計方法 PCBの形状が決まったら、CADツールで基板の形状を描画する必要があります。これが基板の基礎を形成するもので、設計者は次にコンポーネントの配置に進むことができます。高性能デバイスの場合は、高速/高周波機能を備える多層PCBを設計することになります。各レイヤーにGND/電源プレーンを定義する必要もあります。電源/GNDレイヤーの形状の定義には、設計ソフトウェアに組み込まれたポリゴンエディターが必要です。 特定のアプリケーションに対応する円形のPCB設計 特定のアプリケーションでは曲線状や円形のデバイスが求められ、それによってPCBの設計もデバイス パッケージのフォームファクターに合わせる必要があります。四角形の基板を曲線状のパッケージ内部に使用すると、利用できる基板スペースが縮小します。そのため、曲線状の設計にすることでパッケージの輪郭に合ったPCBを実現できます。これによって、いっそう設計の柔軟性が得られ、将来、新しい機能を組み込むために設計を拡大することもできるようになります。 特定の基板形状は、各アプリケーションに応じて優れたCADツールを必要とします。優れた設計ソフトウェアは、曲線状や円形のPCBの作成を実現します。 特定のアプリケーションに応じた基板形状のカスタマイズの詳細については、こちらをご覧ください。 曲線状や円形のPCBで電源/GNDプレーンを定義するには、ポリゴンエディターを備えた設計ソフトウェアが必要です。これによって、GND/電源プレーンのカスタマイズが可能になり、円形のPCBに適応することができます。
PCBの種類 PCB設計を開始すると、アプリケーションごとに専用の異なる設計要件があることに気づくでしょう。ワークフローの生産性を損なうことなく、全ての設計要件を満たすには、どのような設計要件にも適応するPCB設計ソフトウェアが必要です。統合設計インターフェースを備えたPCB設計ソフトウェアを使用すれば、アプリケーション固有の設計要件を定義し、満たすことも簡単です。 Altium Designer あらゆるアプリケーションに合わせて固有のPCBを設計できるPCB設計ソフトウェアパッケージ。 完全に電気を使わない生活をしている人以外は、常に多数のPCBに囲まれていると言っても過言ではありません。これらのPCBは、どれも固有のアプリケーションに合わせてカスタマイズされており、デバイス間で交換できるPCBは1つとしてありません。PCB設計には、暗黙的にカスタマイズ性が求められるため、設計者と技術者には、あらゆるアプリケーションに対応するPCBを構築できる設計ソフトウェアが必要です。 PCBにはさまざまな種類がありますが、最新の設計プロセスで使用されるPCBには、リジッドPCB、フレキシブルPCB、リジッドフレキシブルPCBなどがあります。しかし、使用するPCBの種類についてはさらに多数の考慮事項があり、プリント回路にはどのような銅箔要件があるのか、それによって半田、およびソルダーマスク要件はどうなるのか、表面実装コンポーネントやスルーホール技術は使用されるのかなどを検討する必要があります。 片面PCBでも、細かい調整や正確な計算を必要とする制約や寸法線が十分にありますが、多層、またはマルチボードのシステムではどうなるのでしょうか。PCBの種類は、技術者が考慮に入れる技術的な性能や要件に合わせて適応し続けていますが、お使いの設計ソフトウェアはこの変化に追いついていますか。 あらゆるアプリケーションに対応するPCB設計 全てのPCBが同じように作成されるわけではなく、ほとんどのアプリケーションには独自に設定された機能要件があります。同様に、全てのPCB設計ソフトウェアパッケージが任意のアプリケーション向けの設計に合わせて即座にカスタマイズできるわけでもありません。シングルレイヤーなどのより単純なPCBや低速デバイスの場合、必要なデザインルール数とコンポーネント数はその他のデバイスよりも比較的少なくなります。どのようなアプリケーションであっても、PCB設計ソフトウェアで設計仕様をカスタマイズできる必要があります。 全ての要件は、デザインルールを使用して実現されます。多くのPCB設計ソフトウェアパッケージには、業界標準のデザインルールが含まれており、これを使用することで大幅に設計時間を節約できます。これに加えて、どのデザインルールがアプリケーションに適しているかを設計者が選択し、独自のデザインルールを指定できるような設計ソフトウェアが望ましいでしょう。また、設計の検証時には、ソフトウェアによってこれらのルールを基準にレイアウトがチェックされ、簡単にエラーを修正できる必要があります。 PCBアプリケーションに合わせた設計ソフトウェアのカスタマイズ 特定のアプリケーションに合わせた構築には、設計環境のパラメーターを定義できる設計ソフトウェアが必要です。これには、カスタマイズしたデザインルールの定義、カスタマイズしたコンポーネントの構築、レイヤースタックアップの指定、電源とGNDの配列が含まれます。これら全ての側面によって特定のアプリケーションに合わせた設計の基盤が築かれます。 PCB設計ソフトウェアには、デザインルール チェックとカスタマイズ機能が含まれている必要があります。これにより、特定のアプリケーションが持つ要件を満たす設計を実現しやすくなります。 デザインルールの設定、およびチェックの詳細については、こちらをご覧ください。 特別なPCBアプリケーションでは、特殊な機能を備えたカスタマイズコンポーネントの作成が必要になる場合が少なくありません。 カスタマイズ コンポーネントの作成の詳細については、こちらをご覧ください。 設計ソフトウェアには、ボードシェープからレイヤースタックアップ、および材質オプションまで、あらゆる基板配置に必要な全てのオプションが含まれている必要があります。 基板のカスタマイズの詳細については、こちらをご覧ください。
ビアの作成のための優れたツールセット ビアの作成のための優れたツールセット クラス最高のパッドとビアのライブラリやドリルペアマネージャーでは、あらゆる種類のビアを定義して保存できます。 Altium Designer 専門家を対象とする、効果的で使いやすい最新のPCB設計ツール。 PCBのレイヤーの接続に使用されるビアでは、途切れのない信号経路の確保が要求されます。最も一般的なビアはPCBのすべてのレイヤーを貫通する円筒状の穴ですが、これはスルーホールと呼ばれます。スルーホールのそれぞれの端にはパッドが含まれます。密度の高い基板でのスペースの節約とシグナルインテグリティーの確保という特殊な用途向けのビアもあります。 PCBでは通常、少なくとも1つの内層と片方または両方の外層を接続するためにビアが使用されます。ブラインドビアは1つの外層と1つ以上の内層を接続し、その終端は内層になります。ベリードビアは内層の信号を接続しますが、外層には到達しません。それぞれの内層のビアの交点で接続が確立され、連続した信号経路が確保されます。コストに応じてこの種類のビアを選択します。 PCBのビアの種類 最も一般的なビアはスルーホールビアで、すべてのPCBのうちの99%で使用されています。また、重要な信号に対処するために使用されるビアもあります。ここでは、シグナルインテグリティーを確保するために追加機能が必要になります。この用途で最も利用されているのはブラインドビアです。このビアは基板全体ではなく数レイヤーのみを貫通するので、誘導性が制限されます。そのため、内層の接続で外層からの遮蔽が必要な場合に使用されます。サーマルビアは、サーマルリリーフのパッドでパターンを使って、大量の電力を消費する機器から熱を逃がします。 ブラインドビアの開始レイヤーと終了レイヤーの指定 Altium Designerのパッドとビアのテンプレートを使ったカスタムのビアの作成 それぞれの種類のビアは、パッド/ビアテンプレートエディターで作成、定義して、設計のローカルパッド&ビアライブラリに保存できます。このインテリジェントなエディターでは、IPC寸法が認識され、カスタムで作成したビアに名称が割り当てられます。この名称には、それぞれのビアのIPCの定義が含まれます。これが、PCBベンダー機能に関連付けられ、カスタムパッドやビアをユーザーが入手できるようになります。Altium Designerには、ユーザーの要求を予測するエディターが備わっています。これにより、製造に関する適切な制約を維持しながら、カスタマイズされたビアを設計に使用することができます。 各ビアの特長に基づいてカスタムのビアを作成し、保存しておきましょう。 サーマルビアを使用すれば、デザイン全体で熱を逃がすことができます。 PCBにサーマルビアを追加する方法については、こちらのwebセミナーをご覧ください。 ブラインドビアとベリードビアを使用すると、PCBでスペースを節約してコストを削減できます。 ブラインドビアとベリードビアの詳細については、こちらをご覧ください。 マイクロビアでは、多層PCBで小さなトレースを配線したり、スペースを節約したりできます。 Altium
アプリケーションでリジッドフレキシブル技術が必ずしも利用されないのはなぜですか? アプリケーションでリジッドフレキシブル技術が必ずしも利用されないのはなぜですか? アプリケーションで、リジッドフレキシブル技術が必ずしも利用されないのはなぜですか? よい質問ですね!リジッドフレキシブル技術は、リジッド基板とフレキシブル回路のハイブリッドで、両者の利点を最大限に活かした技術です。フレキシブルな部分は、取り付け時(折り曲げて取り付ける)や完成品での使用時(動的に折り曲げる)に折り曲げることができるため、スペース、重量、パッケージングの問題の解決に有効です。リジッドな部分は、高密度コンポーネントの領域を確保し、より多くの層数、複雑な配線、基板の両面への表面実装を可能にします。どのアプリケーションにもこの構造を使用することが私には理にかなっています! より現実的なことを言えば、特定の設計で使用する技術を選択する際、コストはほとんど常に検討すべき要素となります。リジッドフレキシブルは、あらゆる利点を備えていますが、必ずしも最適な総コストの解決策になるとは限りません。この後のブログで、リジッド回路、またはフレキシブル回路のコストではなく、設計の総コストをリジッドフレキシブル設計と比較することの重要性についてお話しします。ここでは、フレキシブル、およびリジッドフレキシブル基板の製造コストが、標準的なリジッド基板よりも高い理由を考えてみましょう。 第一に、標準的なFR4ラミネートに比べて、単純に原材料が高価です。PCB市場では、リジッド基板の材料よりもフレキシブル基板の材料の消費量が少なく、原材料のコストに顕著な差が生じています。 第二に、フレキシブル基板の材料は、場合によっては取り扱いが難しいことがあります。設計者は、薄くて軽量で折り曲げや折りたたみが可能であるという理由でフレキシブル基板の材料を選択しますが、これらの材料は製造中に特別な注意が必要です。18” x 24”、または12” x 18”で、厚さがほんの2~3 milのラミネートを思い浮かべてみてください。まるで紙片を支えるようなものです。わずかなはためきでも、回路の作成時に銅箔にくぼみやしわが発生する可能性があります。 フレキシブル基板の場合、製造業者は、特別な手順で取り扱う必要があります。例えば、ラミネートを平らに保つには、材料の相対する角のみを持ち上げます。施設内で材料を移送する場合は通常、特殊なトレイまたは棚付きカートが必要です。ほとんどのPCB製造用ウェットプロセス装置はローラーベースであるため、フレキシブル基板の材料では、パネルがローラーに巻き込まれないように、テープで固定されたリーダー基板とテープで固定されていないリーダー基板がプロセス全体で必要になることがよくあります。 リジッド回路とフレキシブル回路の材料のコストと処理要件を比較すると、フレキシブル基板の方が高価な理由がわかります。より複雑なリジッド構造では、異種材料のラミネートと製造に必要な特殊加工により、コスト差が広がります。リジッドフレキシブルの構造の違いがコストにどのように影響するかを理解することも重要だと思います。 通常、最も単純で安価な選択肢は、リジッドな外層を持つリジッドフレキシブル基板と、すべてのリジッド層が同じ厚さを持つフレキシブル相互接続層です。これは最も一般的なリジッドフレキシブル基板の構造ですが、前のブログ記事でも申し上げたように、フレキシブル、およびリジッドフレキシブルが独創的な設計を可能にします。例えば、特定の設計ソリューションでは、フレキシブル領域にメッキスルーホールが必要です。確かにそれは可能ですが、製造工程で追加処理のために余分なコストがかかります。簡単に言うと、フレキシブル層は、スタックアップの残りの部分に組み込む前に、スルーホールを作成するために「ウェットプロセス」の工程が必要です。 パッケージングの問題を解決するもう1つの独特な方法は、特定のフレキシブル層、またはテールを別々の部分に分割する方法です。例えば、フレキシブル層1と2をある一方向に、フレキシブル層3と4を別の方向に、フレキシブル層5と6をさらに別の方向に移動します。これは、リジッドフレキシブル技術のとても良い使い方です! ただしこの構造は、前述した単純なバージョンに比べ、製造中にはるかに多くの処理が必要です。このような複雑な設計を行う方法はいくつかありますが、不必要なコストを増やさないよう、設計プロセスの早い段階で製造者と協力することを強くお勧めします。 最初の質問に答えるなら、リジッドフレキシブル技術では、リジッド回路とフレキシブル回路の両者の利点を活用できます。ただし、主にコストの問題で、すべてのアプリケーションに使用することはできないと言えます。リジッドフレキシブルの製造は、リジッド基板やフレキシブル回路の製造よりも複雑です。リジッドフレキシブル技術でパッケージングの問題を解決できない場合は、単に回路自体のコストではなく、設計の総コストを考える必要があります。多くの場合、リジッドフレキシブルによってワイヤ、ケーブル、およびその他の部品表項目を除外できるので、コストを節約できます。このトピックについてはこの後のブログで取り上げますので、引き続きご注目ください! 今すぐ Altium Designer の無償評価版