SPICE: Certainty for All Decisions

Design, validate, and verify the most advanced schematics.

シミュレーションと解析

Filter
Clear
最良のPCB設計ソフトウェアの考慮すべき機能とは Thought Leadership 最良のPCB設計ソフトウェアの考慮すべき機能とは 家の購入を決意する前には、おそらくたくさんの質問をするかと思います。自分にとって大事な施設やサービスが近所にありますか? 近隣の環境に問題がなく、安全ですか? 家の間取りが自分のニーズに合っていますか? これらはいずれも、そこに住むと決める前に解決する必要がある重要な質問です。 同様に、PCB設計ソフトウェアの購入も同じレベルの詳細な検討が必要です。そのソフトウェアが自分に必要な処理を行ってくれるかどうか、どのようなサポートが受けられるかなどを確認する必要があります。また、会社の将来や、それらのツールが設計ニーズの変化にともなって設計者とともに成長できるかどうかなども考慮する必要があります。 新しい家の購入と全く同じように、新しいソフトウェアへの移行は大変な作業になる可能性があります。設計者を手助けするため、Altiumは、PCB設計ソフトウェアについて質問する時に設計者がガイドとして使用できるトピックリストをまとめました。 PCB設計ソフトウェアが必要な処理を行ってくれるか 最初に確認すべきことは、検討しているPCB設計ソフトウェアが、自分に必要な処理を行ってくれるかどうかです。この質問に答えるためには、どのような設計技術のためにそのソフトウェアを使用するかを明らかにする必要があります。設計するのは片面、両面、または 多層基板 ですか? それらの設計の用途は、 電源 、 アナログ 、 デジアナ混在信号 、 高速 、あるいは RF
組み込み型ソーラーシステム向けのPCB設計ガイドライン Thought Leadership 組み込み型ソーラーシステム向けのPCB設計ガイドライン 旅行から戻って来た直後に、もう一度旅行に出掛けたいと思ったことはありませんか? 私にはそんな経験があります。前回のビーチリゾートでの休暇が、雷雨が続いたせいで台無しになってしまったのです。旅行の計画を立てるときは、予測できない天気というものがいつもジレンマになります。アウトドアで過ごす予定があればなおのことでしょう。 屋外での使用が想定される組み込み型のソーラーシステムを設計する際、私はこれと同じ慎重な姿勢で取り組みようにしています。こうしたシステムは、安定した電力供給で稼働する組み込み型のシステムとは完全に異なる難題です。例によって、私は苦労の末に慎重になることを学びました。というのも、最初に手掛けたソーラー式の試作は、1日でも雨が降ると稼働しなくなってしまったからです。 組み込み型ソーラーシステムについては考慮すべき状況がたくさんあり、太陽光のない状態で何日も稼働するように計画しなければなりません。 組み込み型ソーラーシステムの設計で考慮すべき要素 1. ソーラーパネル 言うまでもなく、ソーラーシステムで最も重要なの要素はソーラーパネルです。これについては、多結晶や薄膜よりも効率がよく、暑い気候でも優れた性能を発揮する単結晶を選択したほうがよいでしょう。パネルの中には最大22%の 太陽光を電力に 変換できるものもあります。とはいえ、単結晶や多結晶の効率はサプライヤーによって異なるため、事前に詳細情報を確認しておきましょう。 2. 電池の容量 組み込み型のソーラーシステムで重要なパラメーターは、ソーラーパネルの性能が0%になった場合のシステムの持続性です。環境要因によっては、ソーラーパネルに数日や数週間、太陽光が届かない場合もあります。そこで必要になるのは十分な容量のある 電池 です。また、ソーラーパネルの充電率が電池の使用率を上回るようにしておく必要もあります。5時間かけて充電した電池が2時間で消耗してしまっては、とても効率的とは言えません。 3. 太陽光の照射 考え方によっては、ソーラー技術はいたって単純です。太陽光がなければ電力は生成されません。ただし必ずしも、8時間分の太陽光で8時間分の電力が生成されるわけではありません。「 太陽光ピーク時間 」という用語がありますが、これは太陽が空の最も高い位置にあって、ソーラーパネルが一番効率的になる時間帯を指します。こうした要素について認識し、太陽光ピーク時間を算出しておくことが望まれます。
パワーインテグリティーにまつわる5つの俗説 Thought Leadership パワーインテグリティーにまつわる5つの俗説 ​ パワーインテグリティーは新しいものではありませんが、現在ますます注目が高まっており、今後も関係者の一番の関心事であり続けるでしょう。製品の高速化と小型化の傾向が継続するなか、もはや1 ミリも無駄なスペースはありません。設計はこの事実を踏まえて進める必要があるでしょう。業界に2 ~3 年以上従事されている方であれば、パワーインテグリティーに関する下記の俗説を耳にされたことがあるかもしれません。 銅箔を使え 皆さんは、「銅箔は使えば使うほどよい」と教えられたかもしれません。銅箔の流し込みを行うだけで、パワーインテグリティーに関連する問題は、すべてとは言いませんが、その大半が解決します。ただし、これに当てはまらない場合もあります。たとえば、熱に関係する問題は解決するものの、浮島や半島が残るといった他の問題を引き起こす場合です。無害に見えるものの、浮島や半島は特定の共振周波数を持っており、一定の状況下で障害を引き起こします。こうした障害はランダムに現れることもあるため、正確に特定して修復することは極めて困難です。これを呪いか何かのせいにする前に、銅箔の流し込みによって浮島や半島が発生していないかどうかを必ず確認しなければなりません。それを怠ると、設計を断念して、レイアウトをやり直すはめになります。 他に考慮すべきことはコストでしょう。これはエンジニアの頭にいつもあることではないかもしれません。銅箔は安価なものではありません。特に予算の制約がある今、やみくもに余計なプレーン層を追加するわけにはいきません。過大設計は高額になってしまいます。 IPC-2152は絶対に外さない これは皆さんが驚かれることかもしれません。確かにIPC-2152 は重要であり、許容範囲の温度上昇に対して配線幅を最小化するという手段で問題を回避する際の手引きとなります。ただし、そのためにIPC-2152 を適用すると、電力配電回路網に必要以上のスペースを割り当てざるを得なくなります。つまり、貴重な面積が占領され、設計のレイヤーが増えてしまいます。 IPC-2152 はいつでも使える優れたツールであり、効率的な電源供給の設計には有効ですが、むやみに適用すべきではありません。パワーインテグリティーツールとともにIPC-2152 をもっと慎重に使用すれば、電力配電回路網の面積を削減しながら、製造に向けて安全に設計を進めることができます。 ビアが多くなり過ぎることはない 精通している方であればお気づきかもしれませんが、IPC-2152 はビアとなるとあまり適切ではありません。配線幅と同様に、IPC-2152 はかなり保守的であり、基板には大きめのビアが必要以上に形成される可能性があります。銅箔に大きな穴が開いてしまっては問題でしょう。つまり、電流が使う面積が減るために電流密度が増加し、結果として温度が上昇します。それだけでなく、残りの設計に割り当てられるはずの面積が奪われ、特に最後の10% の基板の配線を完成させるのが困難で時間のかかる作業になってしまいます。他のIPC-2152
電源解析が効果的なPCB設計に不可欠な理由 Thought Leadership 電源解析が効果的なPCB設計に不可欠な理由 この焦げる臭いは何でしょう? 自分の試作でないことを願います。 以前、愚かにも木工をやってみようと決心したことがあります。ロッキングチェアのように、何か簡単なものから始めようと考えました。構造や静力学に関する限られた知識を使って、座った途端にばらばらに壊れる椅子を作るのに成功しました。使用したYouTubeのチュートリアルでは、座ると椅子が崩壊する部分には触れていませんでした。普通は、何か作ったら、物理的にテストする前にその道のエキスパートに見てもらうのが良いのでしょう。同じことがPCB設計にも言えます。たとえ優れた設計者であっても、電源のエキスパートであるとは限りません。アルティウムの電源解析ツール PDN Analyzer ご利用のパーソナルコンピュータに、電力のプロが持つ知識を全て提供してくれます。優れた電源解析プログラムでは、発火する試作にお金を使う前に、電流密度、温度の問題、電圧降下をチェックできます。 電流密度と温度 私は、ロッキングチェアを作るとき、支柱の幅を決めるのに、古い「じっと見る」方法を採用しました。そして、その方法では尻もちをつくことが判明しました。PCBのトレースを設計するときにも、同様の方法を採用できます。見て良さそうな幅を選択して配置すると、何がまずいのでしょう? 基板が焼けるかもしれません。電源プレーンがスイスチーズのように見えたり、ビアの負荷が大きすぎると、電流密度や温度が高くなります。電力消費が多い集積回路(IC)を使うと、PCBで発熱が増える場合があります。 電源プレーン: 製品を「過剰に設計」したいとは思いませんが、銅箔のことになると誰も気にかけません。問題が発生するのは、電源プレーンを追加しすぎた場合のみです。とは言っても、設計がますます小さくなる中、電源プレーンは、しばしばサイズが小さくなったり、奇妙な形に変わったります。電源プレーンが小さくなると、 過度の電流密度でボトルネック ができる場合があります。 ビア: ビアも重要です。 ビアの設計で EMIを減らすのに忙しすぎて、ビアが電流にどう関連するかを考えることができません。しかし、ビアは、PCB上に電流を充満させる場合があります。電流密度が高いと高温になり、時にはトレースを溶かすほど高温になることを思い出してください。 IC : 食べ過ぎると、普通の椅子でも重量制限を超える場合があります。新しいICは、多くの電流を消費し、公称トレースの限界を超える場合があります。最近の電子機器は、ますます高速のICを必要としており、より多くの電力を消費します。試作から煙が出始めるまで、どれほどの電流を取り込んでいるか考えないかもしれませんが。
わずか4つのステップで電源分配ネットワークを最適化する方法 Thought Leadership わずか4つのステップで電源分配ネットワークを最適化する方法 最近の設計者は、電源分配ネットワーク(PDN )インテグリティという、従来考える必要のなかった問題に直面しています。私たちは皆、何十年もの間、シグナルインテグリティーの必要性を感じてきましたが、その間、パワーインテグリティーは、脇に置かれてきました。従来は、専用の電源プレーンを使用するスペースが多くありました(動作に必要なものをデザインに容易に含めることができました)。 しかし、設計の物理的な制限を押し広げ、より小さなフォームファクターに、より多くのコンポーネントを詰め込み続ける中、フォームファクターの縮小を続けながらPDN を最適化する方法が必要となっています。物理的な試作やシミュレーションのエキスパートに頼らないで、設計環境で直接、電源プレーンの形を最適化できれば、どうでしょう? PDN Analyzer powered by CST® は、Altium Designer ワークスペース内でPDN インテグリティーへの道を提供します。従来は非常に長く骨の折れた解析プロセスを、単一の設計環境で完了できる複数のステップに分割できるようになりました。リアルタイムで変更を行い、解析を再実行できます。 PDN Analyzer を使って、わずか 4 つのステップで簡単に PDN を最適化できる方法を説明します。