Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
シミュレーション
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
SPICE: Certainty for All Decisions
Design, validate, and verify the most advanced schematics.
Learn More
シミュレーションと解析
Overview
All Content
Filter
0 Selected
Clear
×
Clear
Thought Leadership
高速配線のための高度なPCBガイドライン
これらの高速配線ガイドラインを使用して、高度なPCB用のこの先進的なボードを作成できます 新しい設計はますます高速化しており、PCIe 5.0は32 Gb/sに達し、PAM4は信号の整合性と速度を限界まで押し上げています。適切なインターコネクト設計は、高度なデバイスの低ノイズマージン、完璧な電力安定性要件などを考慮し、信号が適切に受信されることを確実にする必要があります。 高度なデバイスが低い信号レベルで動作するため、高速配線ガイドラインは、インターコネクト全体でのインピーダンス不連続による信号損失、歪み、反射を防ぐことに焦点を当てています。特に多レベル信号を使用する場合、超高速信号には、ここで提示されたすべての高速設計ガイドラインを真剣に考慮し、実践に移す必要があります。 重要な高速配線ガイドライン 高速がサブナノ秒領域に達する場合、特に新しいPCIe世代で、高速ネットワーキング機器をサポートするために、どの設計者もいくつかの基本的な高速PCB配線ガイドラインを心に留めておくべきです。新しいデバイスが引き続き速度制限を破るため、アプリケーションを満足させるためにいくつかを選択するのではなく、これらのガイドラインすべてを念頭に置く必要があるでしょう。 制御インピーダンスルーティングと電力整合性のためのスタックアップ 信号整合性だけでなく、電力整合性にとっても、スタックアップは重要です。同様に、信号帯域が10GHz台にまで拡大する場合、特に多レベル信号方式(例えば、400GネットワーキングのPAM4)を使用する場合、インターコネクトの インピーダンスを制御する必要があります。これは、適切な終端とマッチングを確保するためです。また、リンギング(つまり、過渡応答を臨界的に減衰させる)を最小限に抑えるためにトレースのサイズを適切に設定しながら、 インピーダンスを一定に保つ必要があります。これには、入念なスタックアップエンジニアリングとインターコネクト設計が必要です。 差動ペアルーティングと長さのマッチング 共通モードノイズが信号整合性における主要な問題であるため、制御インピーダンスルーティングの一環として、差動ペアの長さ全体にわたって十分な結合を確保する必要があります。これには、 差動ペアの長さに沿った位相マッチングも必要です。可能な限り、結合領域は直接レシーバーに伸び、結合されていない領域はドライバーに限定され、長さがマッチしている必要があります。これにより、共通モードノイズは完全に位相が揃っていると見なされ、レシーバーで完全に抑制されます。 適切な基板材料を選択する 高速立ち上がり時間が求められる場合、低損失正接とフラットな分散特性を持つ基板材料を見つける必要があります。ここで分散は非常に重要であり、インターコネクトの長さに沿ってインピーダンスと伝搬定数が連続的に変化することを引き起こします。まず、分散は電磁パルス(すなわち、デジタル信号)が伝播するにつれて広がる原因となります。第二に、強い分散の 存在下では、信号の立ち上がりエッジで見られるインピーダンスが、立ち下がりエッジで見られるインピーダンスと一致しないため、強い歪みが生じます。関連する帯域幅で誘電率がフラットであることを確認する必要がありますが、これは12 GbpsでのPAM4では簡単に30 GHzに及ぶことがあります。 短いトレースとバックドリリング
Thought Leadership
SMPS回路設計:どのスイッチング周波数を使用するか?
ネットワークスイッチの電源供給 電力エレクトロニクスおよびスイッチングモード電源(SMPS)の設計者は、高いスイッチング周波数を使用するとシステム内のスイッチング損失が増加する可能性があることを知っておくべきです。しかし、電源とそれに含まれるコンポーネントの小型化を推進する中で、設計者はSMPS回路設計において高いスイッチング周波数を使用することが求められます。これにより、スイッチング損失やノイズがシステム内で深刻な問題となることがあります。 ほとんどのエンジニアリングの決定と同様に、適切なスイッチング周波数を選択することは、コンポーネントのサイズを小さくする、損失を減らす、ノイズを取り除くというトレードオフのセットを伴います。これら3つを同時に達成することは難しい、または不可能です。しかし、賢いPCBレイアウトの決定を行うことで、SMPS回路における高周波数とエッジレートの必要性と、ノイズを最小限に抑える必要性とのバランスを取ることができます。 SMPS回路における周波数、損失、ノイズの最適化 SMPSがより小さなコンポーネントで動作するためには、スイッチングPWM信号を高い周波数で動作させる必要があります。出力インダクタ、キャパシタ、およびダイオードは、出力を通じてDC電力を伝達するように設計されており、スイッチングノイズ、入力電圧からの残留リップル(例えば、整流回路からのもの)、および入力に存在する可能性のある任意の不要な高調波をフィルタリングします。言い換えると、出力はある特定の帯域幅内でローパスフィルター(実際には、これはRLCバンドパスフィルターです)のように機能します。このフィルターのロールオフ周波数を定義することができます(スイッチングデジタル信号のニー周波数と混同しないでください)。 PWMスイッチングノイズが出力を通じて伝播するのを防ぐためには、PWMスイッチング周波数は回路のロールオフ周波数よりも大きくなければなりません。SMPS回路でバックまたはブーストトポロジーを使用している場合でも、出力のロールオフ周波数は出力キャパシタンスとインダクタンスに反比例します。 言い換えると、十分に高いPWMスイッチング周波数を使用すれば、SMPS回路でより小さなコンポーネントを使用できます。 バックブーストSMPS回路図 一般的に、SMPS回路におけるPWM信号の切り替え周波数が損失の主要な決定要因であり、それが熱に変換されると考えられています。高い周波数を使用する際のこの問題は正しいですが、周波数だけがMOSFETの損失を決定する唯一のパラメータではありません。実際には、SMPS回路で使用されるパワーMOSFETでは、エッジレートがSMPS回路の発熱損失の重要な決定要因です。 回路要素が理想的であるとは限りませんが、適切でない場合にそれらをそう扱いがちです。上記のMOSFETにも同じことが当てはまります。PWM信号が0Vに落ちたとき、MOSFETが完全にオフにならず、エッジレートが遅すぎると導通し続けることがあります。PWM信号のエッジレートを上げると、MOSFETは完全にサイクルされ、OFF状態での導通が少なくなります。これは、実際には切り替え周波数を高い値に設定しても、電力損失を減少させます。 高いPWM周波数と速いPWMエッジレートの組み合わせにより、SMPS回路で使用されるコンポーネントを小さくすることができます。電力損失(つまり、熱放散)が低いため、小さなヒートシンクを使用できます。しかし、高周波数のPWM信号は強く放射し、速いエッジレートは回路内で 過渡応答を引き起こします。この挙動は、MOSFETパッケージとボードレイアウトレベルでの寄生容量と寄生インダクタンスに完全に関連しています。SMPS回路が寄生インダクタンスが最小限になるようにレイアウトされていることを確認する必要があります。 賢いレイアウト選択でSMPSのノイズスパイクを減らす SMPS回路(ダウンストリームPDNを含む)の寄生インダクタンスは、SMPS回路の電圧スパイクの大きさを決定します。寄生容量もSMPS回路の電圧/電流スパイクに寄与しますが、これが支配的になるのはkVレベルで作業している場合です。寄生インダクタンスによるこの特定の電圧スパイクは、SMPSレイアウトの回路ループを占有し、コンポーネントを故障のポイントまでストレスさせる可能性があります。 高速なエッジレートを使用すると、SMPS回路に大きな過渡電流が誘導されます。 標準厚さのFR4上の比較的短いトレース(数cm)でも、約10nHの寄生インダクタンスがあります。PWM信号の急速な立ち上がりエッジと数アンペアのON電流が、数ボルトのスパイクを誘導することがあります。時間が経つにつれて、これはコンポーネントにストレスを与え、SMPSの故障につながります。 高いスイッチング周波数と速いPWMエッジレートを使用すると、このインダクターやこれらのキャパシターよりも小さいコンポーネントを使用できます。 この課題を克服することは難しい場合があり、SMPS回路の寄生成分を抽出することが必要です。これらの回路を設計する際の典型的な戦略は、機能を検証するために回路図からシミュレーションを実行し、プロトタイプを作成した後にテストを行うことです。ここで概説されたガイドラインを活用すれば、動作するデバイスを得るために必要なプロトタイピングの回数を減らすことができるでしょう。 Altium Designer
®
の設計ツールは、SMPS回路を設計し、製造と組み立てに持ち込むことができる強力なレイアウトを作成するのに理想的です。
Thought Leadership
Altium Designerにおける周波数変調シミュレーション
アナログ信号を扱う際には、動作中の調和歪みのような問題を防ぐために、デバイスが線形に動作していることを確認する必要があります。アナログデバイスの非線形相互作用は、クリーンなアナログ信号を歪ませる歪みを引き起こします。アナログ回路がクリップしているかどうかは、回路図やデータシートを見ただけでは明らかではないかもしれません。信号チェーンを手動で追跡する代わりに、シミュレーションツールを使用してデバイスの挙動についての洞察を得ることができます。周波数変調シミュレーションのような、正弦波信号を用いた重要なシミュレーションは、Altium Designer
®
のプリレイアウトシミュレーション機能を使って簡単に実行できます。 この投稿では、 以前のシミュレーションから続けて、トランジスタを含む回路にFMソースを導入します。ここでの考え方は、アナログソースを使用してデバイスが線形範囲、つまり非線形回路が線形に振る舞うのを止める入力値の範囲を確認することです。 これは、アンプ設計やトランジスタベースのアナログ集積回路の設計において非常に重要です。一般的な非線形回路やアンプ設計に関しては、以下のようなことを知る必要があります: 飽和レベルは、コンパレータ、シュミットトリガ、オペアンプ などの回路において重要です。圧縮点は、相互変調生成物が顕著になり、信号が劣化する入力電力レベルを決定します 。バイアスあり/なしのDC成分(例えば、フォトダイオードの光導電モードや光起電力モード) に対する動作モード。非線形フィルタリングは、トランジスタモデルの寄生要素や全体の回路および半導体の非線形挙動に関連します 。このシステムで重要なもう一つの点は、回路の非線形性に加えて、整流とDCバイアスです。共通コレクタ/エミッタ増幅回路では、トランジスタの電流を完全に変調するために、時間変動信号にある程度のDCバイアスが必要になることがよくあります。そして、負荷にクリーンな波形が渡されるように、必要最小限のDCバイアスを見つけることが有用です。この記事では、これを調査し、これらのシミュレーションを一般的に設定する方法を示します 周波数変調シミュレーションの始め方 前回の投稿では、NPNトランジスタを含む回路の負荷線分析について見てきました。DCスイープの結果から、コレクター-エミッター電圧が高いレベルにランプアップされると、コレクター電流が飽和し始めるのがわかります。これにより、この回路の負荷線を抽出し、しきい値電圧の変化を見ることができました。 このシミュレーションでは、正弦波FMソースをシミュレーションに取り入れ、クリッピングが発生するタイミングを調べる方法をお見せします。この周波数変調シミュレーションでは、フーリエ成分を調べ、新しい高調波が生成されるタイミングを決定できます。次に、DCバイアスを変更してシミュレーションを修正し、FM信号がクリップする方法と、関連する周波数帯域全体で線形動作につながる入力値の範囲を特定できます。 RF信号チェーン設計の重要な側面です。 前回の投稿からシミュレーション回路図を再利用しましたが、ベースに見られるDCソースを周波数変調ソースに置き換えました。このシミュレーションソース(VSFFMと名付けられています)には、 コンポーネントパネルのSimulation Generic Components.IntLibライブラリからアクセスできます。この回路図では、V_CCからトランジスタベースへの抵抗を追加して、V_FMにいくらかのDCオフセットを適用しました。この回路図を使用して、R_Bの値を調整し、V_FMに十分なDVオフセットを適用して、R_LOADにクリーンなFM信号を渡せるかどうかを確認できます。 この回路図では、基本的な考え方は、FM波を使ってトランジスタの電流を変調することです。ここでは、R_Eを電流制限抵抗として共通コレクタ構成を使用しました。しかし、共通コレクタ構成(ベースにV_FM)を使用し、R_Eを通じて出力を測定することもできます。私たちの目標は、変調された負荷電流を線形範囲に入れるためにV_CCによって供給されるベース電流を決定することです。この追加電流は基本的に負荷線を上に移動させ、V_CCが十分に大きい限りアクティブ領域に入ることに注意してください。しかし、V_FMが大きすぎると、飽和領域に戻ってしまう可能性があります。V_CCがロジックレベルで動作する場合、十分なDCオフセットを適用すれば、負荷でクリーンなFM波を得ることができると合理的に期待できます。 FM信号パラメータ
Thought Leadership
PCB内の信号歪み:原因と解決策
高速信号の長さ合わせは、すべて同期に関するものです... 信号の歪みは、信号の整合性や回路分析に関する多くの議論でしばしば触れられるだけのものです。より多くのネットワーク製品が高速で動作し、複雑な変調方式を使用するようになると、信号の歪みがビットエラー率に寄与する深刻な問題となることがわかります。歪みの源は、電気的な相互接続でのデータレートの速度向上を妨げる主要なボトルネックの一つとして挙げられています。 同じ問題は、特に10GHz台の周波数で動作するアナログ信号においても見られます。RF/ワイヤレス領域の設計者は、設計、テスト、測定中にこれらの信号の歪み源を理解する必要があります。 線形対非線形の信号歪み 信号の歪みのすべての源は、線形または非線形として分類することができます。それらは調和波の生成という点で異なります。非線形歪みの源は、信号が源を通過する際に調和波を生成するのに対し、線形信号歪みの源は調和波を生成しません。歪みの両方の源は、信号を構成する周波数成分の大きさと位相を変更することができます。 信号の歪みの異なる源は、帯域幅の歪み源と特定の信号の周波数内容に依存して、異なるタイプの信号(アナログまたはデジタル)に異なる影響を与えます。信号の歪みの異なる源は、変調のタイプに応じて、変調された信号にも異なる影響を与えます。 明らかに、異なる信号の歪み源の範囲は広く、すべての源を詳細にカバーすることはできません。しかし、PCBトレースとコンポーネントにおける線形および非線形の信号歪みのいくつかの重要な源を要約することができます。 線形信号歪みの源 周波数応答と位相歪み。線形回路での周波数スイープシミュレーションに慣れている場合、伝達関数が 線形回路内の信号の位相と振幅の変化を定義することを知っているでしょう。回路、特定のコンポーネント、または相互接続の伝達関数は位相シフトを適用し、信号の大きさを調整します。位相と振幅のこれらの変化は周波数の関数であり、ボード線図で視覚化されます。これは、異なる周波数成分が異なる量だけ遅延され、これらの異なる周波数成分が異なる量で増幅または減衰されることを意味します。 不連続。 この広範な歪み源には、相互接続に沿ったインピーダンスの不連続(例:ビアやトレースのジオメトリ)や材料特性の不連続(例: ファイバーウィーブ効果から)が含まれます。 分散歪み。これは、基板、導体、およびボード内の他の材料における 分散によって生じます。この歪み源は避けられませんが、相互接続の長さが短い場合には気付かない程度に小さくすることができます。基板内の分散は、デジタル信号の異なる周波数成分がトレースを異なる速度で移動する原因となります。分散はまた、トレース上の信号によって見られる損失角度に影響を与え、信号歪みに寄与します。これにより、パルスが伸びる(つまり、群速度が周波数依存になる)ことが起こり、分散補償がない超高速レーザーで起こるのと同様です。 PCB相互接続で分散を補償する一つの解決策は、 DSPアルゴリズムを使用するか、正と負の群速度分散を交互に持つ層状基板ウィーブを使用して、関連する周波数範囲での正味の分散がゼロになるようにすることです。この特定のトピックは十分に広範なため、独自の記事に値します。 この優れた記事をSignal Integrity Journalで、PCBトレースの分散に関する完全な議論をご覧ください。
Thought Leadership
Altium Designerにおける電子システムレベルの回路設計
エレクトロニクスシステムレベルの設計では、機能性と抽象化に焦点を当てることができます PCBレイアウトエンジニアの日常は、回路図を実際の製造可能なPCBに変換することについてです。これが実現する前に、設計は機能性を設計することに焦点を当てた抽象レベルで始まります。全体的な設計プロセスが進むにつれて、設計要件はより詳細になり、信号処理レベルに達し、最終的にはコンポーネントレベルに達します。新しいシステムに独自の機能性を作り出そうと忙しい設計者やエンジニアは、信号処理レベルで操作し、先進的なアプリケーションのための新製品を構築することを可能にする設計機能が必要です。 なぜシステムレベルで始めるのか? 新しい技術分野では、かなりの信号処理が必要とされ、これはコンポーネントレベルに到達する前にシステムレベルで決定される必要があります。 自動車およびUAVレーダー、テレコムおよびファイバーネットワーキング、産業制御、 センサーデータ取得および処理、その他多くの混合信号アプリケーションは、馴染みのある例でしょう。必要な信号処理ステップが決定され、完成されると、設計者やエンジニアはこれらの機能を回路図およびボードレベルで実装するために必要なコンポーネントを決定することができます。 Altium Designer
®
の幅広いシミュレーションツールセットは、システムレベルでの作業に理想的です。設計者は、高い抽象レベルでシステムレベルの信号処理ステップを設計する自由を持ちます。必要な信号処理ステップを実装するために必要な機能を決定したら、その機能をコンポーネントレベルで実装するための幅広いコンポーネントにアクセスできます。Altium Designerでこれがどのように機能するか見てみましょう。 Altium Designerにおける電子システムレベル設計 Altium Designerでのシステムレベル設計は、新しい回路図から始まります。ここで、コンポーネントライブラリにあるすべての回路シミュレーション機能にアクセスできます。 新しいプロジェクトと空の回路図を作成すると、回路図にシミュレーションモデルを追加し始め、ユニークな機能と信号処理ステップを設計できます。 下の画像では、Altium Designerの標準シミュレーションおよびモデリングツールを使用して、シンプルなブロック図を作成しました。ここでは、加算器を使用したフィードバックループを含め、まもなく説明する2つの処理ブロック(ABM1とラベル付けされている)で意図した信号処理ステップが含まれています。 信号処理ステップを設計するためのブロック図 上の画像で、コンポーネントパネルを開いて多数の標準ライブラリを読み込んでいるのがわかります。赤いボックスで囲んだのは、関連するシミュレーションおよびモデリングライブラリです。これらのライブラリを使用すると、電圧/電流源(区分線形、任意、正弦波、電圧/電流制御源)などの標準的なシミュレーションモデルにアクセスできます。また、多数の数学関数にもアクセスできます。フィードバックループを作成するために、電圧を加算する関数(M_IN、設計ID ADDVとラベル付けされている)を使用しました。 これらのシミュレーションモデルに加えて、Simulation
Thought Leadership
Altium Designerでアンプのシミュレーションを作成する方法
高速信号の配線長の一致は、すべて同期に関連する テストと測定の段階は迅速に済ませたいものです。最終的に設計段階が完了すると、試作のテストを行えるようになります。これは同時に、システムに必要なコンポーネントを絞り込み、システムで計画している機能を評価することでもあります。回路のテストと測定は非常に重要ですが、これらは比較の基礎がなければ意味を成しません。 シミュレーションの役割 アンプでも他のどのような回路でも、シミュレーション ツールは基板をレイアウトする前に回路を検証する際に重要です。多くのコンポーネント製造業者は特定のアプリケーションに特化したIC、SoC、SoMを製造していますが、コンポーネントによっては要求に対処できない場合もあります。次のシステムで使用する革新的な機能を実現するためには、多くの場合に各種のICや別々のコンポーネントからカスタム回路を構築する必要があります。 このような場合は、設計を評価するためにシミュレーション ツールが有用です。シミュレーションの結果は、後で試作のテストを開始するときや、特化したコンポーネント用の評価基板を使用するときに、比較用の参照として使用されます。今日では新しい マイクロ波やミリ波のシステムが一般的になりつつあり、特に5Gやレーダー アプリケーションがあらゆる場所で使用されるようになっているため、RFアンプを中心に特化されたシステムの設計が必要になることが増えるでしょう。このようなシステムではシグナルインテグリティーが特に重要で、設計者は性能を評価するためにシミュレーションを行うことになります。 Altium Designer
®
には大規模なコンポーネントライブラリがあるほか、解析ツールも内蔵されているため、アンプの正確なシミュレーションを作成して多くの解析を実行できます。必要なシミュレーション ツールはAltium Designerの回路図エディタ―に内蔵されており、回路の設計時に簡単に利用できます。 Altium Designerでアンプのシミュレーションを作成する 新しいシミュレーションの作成は、アンプ回路や信号処理ブロックなど、どんな回路も回路図レベルで開始されます。最初の手順は Altium Designerで新しい回路図を作成し、必要なシミュレーション ソースを見つけることです。空白の回路図を作成してから、アンプとそれに関連する回路用のコンポーネントを見つける必要があります。[Components] パネルに移動してSimulation
Pagination
First page
« First
Previous page
‹‹
ページ
10
ページ
11
現在のページ
12
ページ
13
ページ
14
ページ
15
Next page
››
Last page
Last »
💬
🙌
Need Help?
×
📞
1-800-544-4186
📞
1-858-864-1798
✉️
sales.na@altium.com
🛟
Support Center
📣
Ask Community
📞
Contact Us