Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
シミュレーション
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
SPICE: Certainty for All Decisions
Design, validate, and verify the most advanced schematics.
Learn More
シミュレーションと解析
Highlights
All Content
Filter
Clear
Altium Designerでの降圧コンバータシミュレーション
新しい電源を設計する場合は、回路設計時に降圧コンバータシミュレーションを行うのが効果的です。Altium Designerでは回路図から直接、降圧コンバータシミュレーションを簡単に行えます。
Thought Leadership
Buckコンバーター用インダクタの選択方法
SMPSは、お気に入りの電子機器をスムーズに動かすために、静かに(しかし電気的にはノイジーに)活動しているデバイスの一つです。彼らは背景で静かに役割を果たしていますが、彼らがいなければボードは動作しません。電力をたくさん消費するアプリケーションのDC-DCコンバータ設計の一環として、安定した電力供給を高効率で負荷に提供するためには、コンポーネントの選択が非常に重要です。 数多くのDC-DCコンバータトポロジーの中で、バックコンバータは入力電圧を下げるために、高効率の電力変換を提供するために多くの用途で使用されます。これらの電力コンバータのコンポーネント選択に関する一般的な質問は、バックコンバータ用のインダクタをどのように選択するかです。バックコンバータ内のインダクタや他のコンポーネントを扱う際の目標は、電力損失を熱に限定し、同時に電流リップルを最小限に抑えることです。 バックコンバータのインダクタ 以下に示すのは、SMPS用の基本的なバックコンバータトポロジーです。この図では、MOSFETからの出力がPWM信号で駆動され、ユーザーが選択したデューティサイクルでMOSFETをオン/オフします。インダクタとキャパシタは、PWM信号が切り替わる際に負荷に安定した電流を供給するために重要な役割を果たします。最終的に、PWM信号のデューティサイクルは、ユーザーが負荷に供給される出力電圧を制御するための主要な機能です。 インダクタはPWM信号と同じレートで常に切り替わるため、出力に送られる電流にわずかなリップルを重ねる役割を担います。インダクタとキャパシタはLフィルタを形成し、これは基本的に2次のバンドパスフィルタです。十分に 大きくESRが低いキャパシタを使用すると、キャパシタは低インピーダンスを提供し、リップルを構成する高周波成分は大部分が取り除かれます。 バックコンバータ用のインダクタの選択方法 インダクタの適切な値は、設計が許容できるリップル電流と、PWM信号に使用する予定のデューティサイクルに依存します。以下の方程式は、ダイオードの順方向電圧降下とMOSFETを通過するON状態の電圧降下の関数としての出力電圧を示しています。これらの電圧を考慮した後、出力電圧は次のようになります: いくつかの数学をスキップして、重要な結果に直接移ります。まず、インダクタンスとPWM周波数はリップル電圧に反比例します。次に、リップルはPWMデューティサイクルの二次関数でもあります。バックコンバーターのリップル電流は次のようになります: PWM信号の立ち上がり時間はどちらの方程式にも現れません。しかし、立ち上がり時間は、 コンバーターから発生するノイズおよび損失(詳細は以下を参照)を決定する上で重要な役割を果たします。重要な結果は以下のようにまとめることができます: デューティサイクルを増加させるとリップルは減少しますが、出力電圧を入力電圧に近づけることにもなります。 PWM周波数を上げるとリップルは減少しますが、これによりMOSFETでの 熱放散が増加します。ただし、これには注意点があります。エッジレートが速いPWM信号を使用すると、高いPWM周波数からの損失が減少します(再度、下記参照)。 より大きな入力電圧を使用するには、リップルを許容レベルに減少させるためにより大きなインダクタを使用する必要があります。一般的に、リップルを減少させるためにはより大きなインダクタを使用します。 PWM立ち上がり時間が重要な理由 インダクタは、出力電流上のリップルを生成し、同時に抑制する役割を担っていますが、これは上記のガイドラインを使用して設計で設定できる設計目標とすることができます。しかし、インダクタが制御できないスイッチングレギュレータのいくつかの重要な側面があります: スイッチング要素からの放射EMI:このトランジスタからのスイッチングノイズは、下流回路にいくらかのノイズを誘導することがあります。 スキン効果による熱損失:これはインダクタの幾何学的形状の機能であり、インダクタンス値ではありません。インダクタがより大きな断面積と高い熱伝導率を持っている場合、インダクタからの熱がより高い速度で放散されます。 トランジスタの熱損失:トランジスタは、スイッチングと調整中に最も多くの熱を発散します。しかし、より速いエッジレートを使用することで、この熱損失を抑制できます。なぜなら、MOSFETがPWM振動の間により完全にオフに切り替わるからです。
Thought Leadership
高周波数と漂遊容量におけるアンプの安定性
アンプは、現代生活を可能にする重要なコンポーネントの一つです。無線通信からパワーエレクトロニクスまで、これらの製品が適切に機能するためには、アンプが安定して予測可能に動作する必要があります。安定性分析は、物理学と工学の中で私のお気に入りのトピックの一つであり、予想外の場所でよく出くわします。その一つがアンプです。 フィードバックとゲインを持つ時間依存の物理システムは、システムが安定した振る舞いに達する条件を持っています。アンプの安定性は、これらの概念をアンプに拡張し、意図しないフィードバックによってシステム出力が望ましくない飽和状態に成長する可能性がある場所です。適切な設計とシミュレーションツールを使用すれば、レイアウトを作成する前に回路モデルの潜在的な不安定性を簡単に考慮に入れることができます。 RFアンプの安定性に及ぼす漂遊容量の影響 アンプ回路の不安定性の源泉、およびアンプICの入出力ポート間は、寄生容量です。この寄生容量は、アンプに接続されるトレース間に存在します。寄生容量は、長いトレース(すなわち、伝送線)のインピーダンスを特定の値に設定するために重要です。しかし、寄生容量はまた、出力ポートと入力ポート間の意図しないフィードバックの経路を提供します。 このフィードバックパスは容量性であるため、入出力信号の周波数が高いほどそのインピーダンスは低くなります。現在、これは通常チップレベルで対処されていますが、より多くのRFアンプがますます高い周波数で動作するにつれて、PCBのトレースやパッドからの寄与がより重要になってきます。わずか数pFの寄生容量でも、運用中にアンプを不安定にするのに十分です。 ボードレベルでは、入力の漂遊容量が帯域幅を制限する効果を持ち、帯域幅は因子(1 + ゲイン)によって減少します。解決策は、アンプのポートでトレースとパッドを設計して寄生容量を最小限にするか、フィードバックループに補償容量を追加することです。高GHz帯域(例えば、mmWave周波数)では、コンポーネント間の間隔は臨界長よりも大きいため、 インピーダンス制御ルーティングを使用する必要があります。SoCへの一部のコンポーネントの統合は、この問題を解消するのに役立っていますが、今後のデバイス用の多くのRFアンプは依然として個別のコンポーネントとしてパッケージされています。典型的な例は、mmWaveアプリケーション用の新しいパワーアンプです。 アンプの安定性を評価する典型的な方法は、メーカーの評価ボードを使用して、直接、任意の過渡的な挙動を測定することです。もう一つの選択肢は、アンプに接続された入力および出力トレース上の寄生容量を決定し、これらをシミュレーションに含めることです。これらのシミュレーションでは、寄生容量を打ち消すために、アンプのフィードバックループに補償用のキャパシタを実験的に追加することもできます。 シミュレーションでの漂遊容量の考慮方法 あなたの回路図は、完璧な回路の2D描画に過ぎません。システム内のどこにも漂遊容量要素を含んでおらず、PCBの実際の挙動を正確に反映していません。とはいえ、適切な設計ツールを使用すれば、PCBに寄生を簡単に含めることができます。受動部品の 自己共振をシミュレートしようとしているのか、またはシステムの他の部分の漂遊容量をシミュレートしたいのかにかかわらず、戦略的な場所に回路図にキャパシタを追加する必要があります。 アンプの入力における漂遊容量をシミュレートするには、適切なサイズのキャパシタとACソースをアンプの入力に追加するだけです。キャパシタはシャント要素として配置されます(つまり、共通のグラウンド接続に接続されます)アンプの入力ポートと出力ポートに。また、アンプコンポーネントの検証済みコンポーネントモデルを使用して、寄生容量の存在下でのアンプの動作を把握する必要があります。シャント容量要素は、基板内のグラウンドと入出力トレース間の結合をモデル化します。 その後、2種類のシミュレーションを実行できます: 過渡解析および 極-零点解析。 過渡解析の予想結果 過渡解析では、アンプが動作するにつれて信号が不安定になり、時間とともに飽和に達するかどうかを確認できます。以下のグラフは、大きな寄生容量による強い不安定性を持つ100 GHz信号の例示結果を示しています。ここでは、意図しない強いフィードバックと高入力信号レベルにより、出力の過渡電圧が2Vの飽和値に達しています。
Thought Leadership
アルティウムとSimberian社のパートナーシップにより成長を続ける高速設計機能
アルティウム社員一同より新年のご挨拶を申し上げます! 今年最初の記事では、Simberian社の営業およびマーケティング責任者であるRoger Paje氏に、最近締結された当社との正式なパートナーシップについて、またSimberian社の高精度フィールドソルバーテクノロジーによるAltium Designerのレイヤースタック、インピーダンス、表面粗さのモデリングなどの新しい高速設計機能の導入支援についてのお話を伺います。これらの拡張機能はAltium Designer 19で初めて搭載され、Altium Designer 20で強化されました。今後はさらに多くの機能が搭載されることをご期待ください。 Judy Warner: Rogerさん、Simberian社について、そして同社でのあなたの役割についてお聞かせください。 Roger Paje: 弊社は、PCB構造、および基板のシグナルインテグリティー解析のための電磁シミュレーション ソフトウェアを開発しています。当社の使命は、技術パートナーと共に、実際の現場での測定により検証された正確な結果を技術者に提供することです。営業、およびマーケティング責任者としての私の役割は、お客様とシグナルインテグリティーコミュニティーとも協力して、設計が最初から機能するように検証できるソフトウェアを作成することです。 Warner: 最近、アルティウムとSimberian社は正式な提携を発表しました。その内容と、PCB設計者がAltium Designerで引き続き実行できることについてお話しいただけますか? Paje: アルティウムとSimberianの提携で重点的に取り組むことはただひとつ。より多くの技術者が正確なシグナルインテグリティー解析を利用できるようにすることです。これは、PCIe
Thought Leadership
高速配線のための高度なPCBガイドライン
これらの高速配線ガイドラインを使用して、高度なPCB用のこの先進的なボードを作成できます 新しい設計はますます高速化しており、PCIe 5.0は32 Gb/sに達し、PAM4は信号の整合性と速度を限界まで押し上げています。適切なインターコネクト設計は、高度なデバイスの低ノイズマージン、完璧な電力安定性要件などを考慮し、信号が適切に受信されることを確実にする必要があります。 高度なデバイスが低い信号レベルで動作するため、高速配線ガイドラインは、インターコネクト全体でのインピーダンス不連続による信号損失、歪み、反射を防ぐことに焦点を当てています。特に多レベル信号を使用する場合、超高速信号には、ここで提示されたすべての高速設計ガイドラインを真剣に考慮し、実践に移す必要があります。 重要な高速配線ガイドライン 高速がサブナノ秒領域に達する場合、特に新しいPCIe世代で、高速ネットワーキング機器をサポートするために、どの設計者もいくつかの基本的な高速PCB配線ガイドラインを心に留めておくべきです。新しいデバイスが引き続き速度制限を破るため、アプリケーションを満足させるためにいくつかを選択するのではなく、これらのガイドラインすべてを念頭に置く必要があるでしょう。 制御インピーダンスルーティングと電力整合性のためのスタックアップ 信号整合性だけでなく、電力整合性にとっても、スタックアップは重要です。同様に、信号帯域が10GHz台にまで拡大する場合、特に多レベル信号方式(例えば、400GネットワーキングのPAM4)を使用する場合、インターコネクトの インピーダンスを制御する必要があります。これは、適切な終端とマッチングを確保するためです。また、リンギング(つまり、過渡応答を臨界的に減衰させる)を最小限に抑えるためにトレースのサイズを適切に設定しながら、 インピーダンスを一定に保つ必要があります。これには、入念なスタックアップエンジニアリングとインターコネクト設計が必要です。 差動ペアルーティングと長さのマッチング 共通モードノイズが信号整合性における主要な問題であるため、制御インピーダンスルーティングの一環として、差動ペアの長さ全体にわたって十分な結合を確保する必要があります。これには、 差動ペアの長さに沿った位相マッチングも必要です。可能な限り、結合領域は直接レシーバーに伸び、結合されていない領域はドライバーに限定され、長さがマッチしている必要があります。これにより、共通モードノイズは完全に位相が揃っていると見なされ、レシーバーで完全に抑制されます。 適切な基板材料を選択する 高速立ち上がり時間が求められる場合、低損失正接とフラットな分散特性を持つ基板材料を見つける必要があります。ここで分散は非常に重要であり、インターコネクトの長さに沿ってインピーダンスと伝搬定数が連続的に変化することを引き起こします。まず、分散は電磁パルス(すなわち、デジタル信号)が伝播するにつれて広がる原因となります。第二に、強い分散の 存在下では、信号の立ち上がりエッジで見られるインピーダンスが、立ち下がりエッジで見られるインピーダンスと一致しないため、強い歪みが生じます。関連する帯域幅で誘電率がフラットであることを確認する必要がありますが、これは12 GbpsでのPAM4では簡単に30 GHzに及ぶことがあります。 短いトレースとバックドリリング
Thought Leadership
Altium Designerにおける周波数変調シミュレーション
アナログ信号を扱う際には、動作中の調和歪みのような問題を防ぐために、デバイスが線形に動作していることを確認する必要があります。アナログデバイスの非線形相互作用は、クリーンなアナログ信号を歪ませる歪みを引き起こします。アナログ回路がクリップしているかどうかは、回路図やデータシートを見ただけでは明らかではないかもしれません。信号チェーンを手動で追跡する代わりに、シミュレーションツールを使用してデバイスの挙動についての洞察を得ることができます。周波数変調シミュレーションのような、正弦波信号を用いた重要なシミュレーションは、Altium Designer
®
のプリレイアウトシミュレーション機能を使って簡単に実行できます。 この投稿では、 以前のシミュレーションから続けて、トランジスタを含む回路にFMソースを導入します。ここでの考え方は、アナログソースを使用してデバイスが線形範囲、つまり非線形回路が線形に振る舞うのを止める入力値の範囲を確認することです。 これは、アンプ設計やトランジスタベースのアナログ集積回路の設計において非常に重要です。一般的な非線形回路やアンプ設計に関しては、以下のようなことを知る必要があります: 飽和レベルは、コンパレータ、シュミットトリガ、オペアンプ などの回路において重要です。圧縮点は、相互変調生成物が顕著になり、信号が劣化する入力電力レベルを決定します 。バイアスあり/なしのDC成分(例えば、フォトダイオードの光導電モードや光起電力モード) に対する動作モード。非線形フィルタリングは、トランジスタモデルの寄生要素や全体の回路および半導体の非線形挙動に関連します 。このシステムで重要なもう一つの点は、回路の非線形性に加えて、整流とDCバイアスです。共通コレクタ/エミッタ増幅回路では、トランジスタの電流を完全に変調するために、時間変動信号にある程度のDCバイアスが必要になることがよくあります。そして、負荷にクリーンな波形が渡されるように、必要最小限のDCバイアスを見つけることが有用です。この記事では、これを調査し、これらのシミュレーションを一般的に設定する方法を示します 周波数変調シミュレーションの始め方 前回の投稿では、NPNトランジスタを含む回路の負荷線分析について見てきました。DCスイープの結果から、コレクター-エミッター電圧が高いレベルにランプアップされると、コレクター電流が飽和し始めるのがわかります。これにより、この回路の負荷線を抽出し、しきい値電圧の変化を見ることができました。 このシミュレーションでは、正弦波FMソースをシミュレーションに取り入れ、クリッピングが発生するタイミングを調べる方法をお見せします。この周波数変調シミュレーションでは、フーリエ成分を調べ、新しい高調波が生成されるタイミングを決定できます。次に、DCバイアスを変更してシミュレーションを修正し、FM信号がクリップする方法と、関連する周波数帯域全体で線形動作につながる入力値の範囲を特定できます。 RF信号チェーン設計の重要な側面です。 前回の投稿からシミュレーション回路図を再利用しましたが、ベースに見られるDCソースを周波数変調ソースに置き換えました。このシミュレーションソース(VSFFMと名付けられています)には、 コンポーネントパネルのSimulation Generic Components.IntLibライブラリからアクセスできます。この回路図では、V_CCからトランジスタベースへの抵抗を追加して、V_FMにいくらかのDCオフセットを適用しました。この回路図を使用して、R_Bの値を調整し、V_FMに十分なDVオフセットを適用して、R_LOADにクリーンなFM信号を渡せるかどうかを確認できます。 この回路図では、基本的な考え方は、FM波を使ってトランジスタの電流を変調することです。ここでは、R_Eを電流制限抵抗として共通コレクタ構成を使用しました。しかし、共通コレクタ構成(ベースにV_FM)を使用し、R_Eを通じて出力を測定することもできます。私たちの目標は、変調された負荷電流を線形範囲に入れるためにV_CCによって供給されるベース電流を決定することです。この追加電流は基本的に負荷線を上に移動させ、V_CCが十分に大きい限りアクティブ領域に入ることに注意してください。しかし、V_FMが大きすぎると、飽和領域に戻ってしまう可能性があります。V_CCがロジックレベルで動作する場合、十分なDCオフセットを適用すれば、負荷でクリーンなFM波を得ることができると合理的に期待できます。 FM信号パラメータ
Pagination
First page
« First
Previous page
‹‹
ページ
7
ページ
8
ページ
9
現在のページ
10
ページ
11
ページ
12
Next page
››
Last page
Last »
他のコンテンツを表示する