シミュレーションエンジニア

In PCB design, a Simulation Engineer is a specialist who uses testing and simulations to evaluate the performance of products in controlled environments. Their expertise is especially valuable during pre-production and testing phases, where they can help a company make informed decisions about whether to invest in the full-scale development of a product. Simulation Engineers rely on a variety of cutting-edge technologies, including modeling, 3D visualization software, and design testing platforms.

Simulation Engineers are sometimes referred to by other job titles, such as Modeling and Simulation Engineer or Testing Engineer. These titles reflect the broad range of skills and expertise required for success in this role, from modeling and simulation to testing and verification. Overall, Simulation Engineers play a critical role in ensuring that PCB designs meet the necessary performance standards and can help companies make informed decisions about product development.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
IRB_Part_I 理想的な整流ブリッジ 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア はじめに 過去数十年にわたり、エネルギー効率の向上は電子設計、特にバッテリー駆動デバイスや電源供給装置の分野で重要な課題となっています。一般的に用いられている伝統的な電圧整流方法や逆極性保護は、大きな電力損失を伴うため、理想的とは言えず、熱要求を増加させ、設計上の制約を課しています。 この記事では、この問題に対する革新的なアプローチ、すなわちMOSFETを整流ダイオードの代わりとして使用する方法に焦点を当てます。理想的なダイオードとして使用されるこれらのトランジスタは、電力損失を大幅に削減し、複雑で高価な冷却システムの必要性をなくします。第一部では、システムを逆極性から保護するための入力回路でダイオードの代わりにMOSFETを使用することに焦点を当てます。第二部では、MOSFET制御技術のさらなる進歩が電源設計をどのように革命化し、さらに高いエネルギー効率と小さな寸法を持つシステムにつながるかを分析します。 逆極性保護への古典的なアプローチ モバイルバッテリー駆動デバイスの開発が始まって以来、設計者にとっての課題の一つは、効果的な逆極性保護を確保しつつ、電力損失を最小限に抑えることでした。逆極性保護の古典的なアプローチは、図1に示されているように、電源と直列に整流ダイオードを使用することです。これらのダイオードは、電源回路に配置され、電流が一方向にのみ流れるようにし、逆極性によるデバイスの損傷を防ぎます。最適化への第一歩として、整流ダイオードをショットキーダイオードに置き換えることで、約50%の効率向上が図られ、電圧降下が0.6-0.7Vから約0.3-0.4Vに減少しました。これは一般的に使用される方法ですが、電圧降下や電力損失といった欠点があります。低電流時に250-300mVの電圧降下を持つバッテリー用途の特殊ダイオードが開発されたにもかかわらず、古典的な解決策は依然として最適とは言えません。 図1: 古典的な逆極性保護 図1に示されたアプローチは、エネルギー効率の良い電池駆動デバイスにおいて長い間受け入れられてきました。その際、電力損失はある程度「コストに組み込まれた」とされていました。しかし、この解決策は、より多くの電力を必要とするデバイスには全く適していませんでした。そのようなデバイスの例には、CB無線、カーオーディオシステム、マルチメディアシステムなど、自己設置を目的としたさまざまな自動車用機器が含まれます。これらの場合、図2に示すように、駆動される受信機と並列に入力ダイオードを使用することが一般的でした。残念ながら、この構成では、誤った極性の場合に回路損傷を100%防ぐことはできませんでした。 図2: 高電流デバイスで使用される逆極性保護 逆極性保護にMOSFETトランジスタを使用する MOSFETトランジスタの普及と入手可能性により、図3に示すようなダイオード構成で使用されるMOSFETを用いた効果的な解決策が現れました。 図3: 逆極性保護としてのMOSFET: A) PチャネルMOSFETを使用する場合 B) NチャネルMOSFETを使用する場合 理想的なダイオード構成は、トランジスタのRDS(ON)値と負荷電流によって決定される低い電圧降下を提供します。例えば、電流が1AでRDS(ON)=10 mΩの場合、トランジスタを通過する電圧降下はわずか10 記事を読む
WCA_Article 回路設計をマスターしよう:最悪ケース分析に深く潜る 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア 回路を設計する際には、実験室の机の上という制御された環境を超えた様々な条件下での信頼性の高い性能を確保することが不可欠です。これには、コンポーネントの許容差や温度変動を考慮することが含まれます。航空宇宙や軍事などの安全が重要なアプリケーションでは、コンポーネントの経年劣化や放射線への曝露などの追加的な要因も考慮する必要があります。適切なテストを設定することは難しいかもしれませんが、徹底的な分析によって設計の堅牢性を効果的に検証することができます。 この記事では、差動アンプの分析を通じて、エラーの原因を理解し、異なる条件下での信頼性の高い性能を確保する方法を案内します。 小電流を測定するための差動アンプ回路 この例では、シャント抵抗を通る小電流を測定するために設計された差動アンプの構成を検討します。選択したオペアンプはADA4084で、レール・ツー・レール出力と低オフセット電圧を特徴としています。まず、回路の正しい機能を検証しましょう。 図1: 小電流を測定するための差動アンプ構成 回路を検証するために、 DCスイープシミュレーションを実施します。出力表現は、出力電圧を増幅率(201)とシャント抵抗値(0.2Ω)で割ることによって電流を計算します。 図2: パラメータを用いたDCスイープシミュレーションの結果 カーソルAが示すように、私たちの回路はほぼ完璧に動作します。例えば、実際の負荷が30.005mAの場合、計算された電流は29.810mAとなります。しかし、実際の世界はしばしば異なります。 次に、抵抗の許容誤差やADA4084データシートからの特定のパラメータなど、さまざまなパラメータを含めます。考慮すべき最も重要なパラメータは、入力オフセット電圧、入力オフセット電流、および入力バイアス電流です。 図3:シミュレーションに含める重要なパラメータとその値 図4:入力オフセット電流、入力オフセット電圧、および入力バイアス電流を含む回路 感度分析 感度分析は、どのパラメータの偏差が出力に最も大きく影響するかを決定することを可能にします。抵抗は1%の許容誤差(感度ウィンドウ内で10m)に設定され、他のパラメータはその影響を評価するために100%に設定されました。 図5:感度シミュレーションの設定 図6:感度分析の結果。相対偏差の列は、パラメータが変化すると出力に与える影響を示しています 予想通り、抵抗の許容誤差が最も重要な役割を果たし、入力電流(バイアスおよびオフセット)は無視できます。この特定のケースでは、簡単のため、これらのパラメータは後で無視されます。 最悪の場合の分析(WCA) 記事を読む
高速設計における信号反射の理解 高速設計における信号反射の理解 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア はじめに 信号反射とインピーダンスマッチングに関する工学は、高速デジタルシステムの設計に関連する基本的なトピックの一つです。高ビットレートのデジタルシステムの場合、ビットの状態「0」と「1」についての情報が矩形波信号の形で送信されるとき、上昇(または下降)エッジの立ち上がり(または下がり)時間は、バイナリ信号の周波数に対して無視できると想定されます。しかし実際には、デジタル信号が無限に速く上昇または下降することはありません。立ち上がり(および下がり)時間は、送信機、受信機のパラメーター、および伝送路の物理的特性を含む信号経路のパラメーターによって決定されます。 高速システムの場合、立ち上がり時間と下がり時間は1ns以下と短くなることがあります。デジタルシステムのバイナリ信号の周波数は数GHzに達することがあり、比較的矩形の形状を維持するためには、上昇および下降エッジはビット期間の一部であるべきです。 電磁波の伝播速度(伝送線路内の電圧と電流の伝播)は、伝送線路の種類や基板の種類など、いくつかの要因に依存します。例えば、FR4基板とマイクロストリップ伝送線路の場合、伝播速度は約160Mm/s(メガメートル毎秒)または525Mft/s(メガフィート毎秒)です。もしエッジの立ち上がり(または立ち下がり)時間が例えば200psであれば、立ち上がり(または立ち下がり)エッジは伝送線路を立ち上がりまたは立ち下がり時間中に32mmまたは1.25インチ移動します。 信号形状を保持するかどうかは、PCBに沿った伝送線が、立ち上がり(または立ち下がり)エッジが移動する距離と比較して長さがある場合に、インピーダンスの連続性を維持し、受信側で適切な終端を行うかどうかに依存します。非常に短い接続やデジタル信号の立ち上がり(立ち下がり)時間が遅い場合、ここで説明されている反射の現象は観察されないかもしれず、スキップされる場合があります。経験則として、信号エッジが移動する距離(つまり、伝播時間と伝播速度の積)が伝送長の10%以上である場合は、出力、入力、および伝送線を適切にマッチングすることが求められます。この手順はインピーダンスマッチングと呼ばれ、PCB上のトレースの設計および抵抗器で構成されるマッチングネットワークを含みます。 インピーダンスマッチングと抵抗マッチング インピーダンスマッチング条件を決定する関係はよく知られています。TXの出力インピーダンスが受信機のインピーダンスの複素共役であり、送信機と受信機を接続する経路の抵抗が送信機と受信機の実部と同じである場合、信号経路はマッチしています。デジタルシステムの実際のケースでは、送信機または受信機経路の複素共役インピーダンスマッチングネットワークを実装することによってマッチングは行われません(これは、任意の虚数インピーダンス成分をキャンセルするために信号線にインダクタとキャパシタを追加する必要があります。また、このタイプのマッチングは通常狭帯域なのでデジタルシステムでは実用的ではありません)。 一般的な実践は、送信および受信ICの抵抗部分のみをマッチさせ、伝送線の特性インピーダンスを純粋に抵抗的にすることです。この場合、必要なマッチングを提供するためには抵抗器のみが必要です。例えば、ドライバー出力に直列抵抗器を配置することは、送信機を伝送線にマッチさせる可能性のある解決策の一つです。受信機では、グラウンドへの並列抵抗器を使用できます(または、差動ペアの場合 - 差動ペアを形成するトレース間に抵抗器)。受信機の終端トポロジに関連するいくつかの例は、Altium Designerで利用可能なSignal Integrityツールから取られた図1に示されています。 図1: Altium Designer シグナルインテグリティツールで利用可能な終端トポロジー デジタルシステムにおける信号反射の例 この章では、50Ωシステムに基づいている反射波形との信号マッチング例について議論します - ラジオ周波数設計に共通のシステムですが、このセクションで提示される関係は、他のインピーダンスプロファイルを使用するデジタルシステムや、差動ペアによって信号が送信される場合にも適用されます 記事を読む
シグナル・インテグリティ記事 4 Altium Designer 24に基づくシグナル・インテグリティの原則 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア 高速および信号完全性への導入 デジタルシステムは、現代の電子機器の基本的な領域の一つです。高効率プロセッサーやFPGA、高速ADCコンバーターとDSPやFPGAを使用する広帯域データ取得システムなど、デジタルシステムの進歩は、さまざまな集積回路やモジュール間の相互接続を含むPCBを特に、電子設計に異なるアプローチを要求します。このアプローチは、現代の高速電子機器で使用される信号の種類に関連しています。 RS232やI2Cのような基本的でよく知られたインターフェースは、データスループットが秒間数百キロビットに限定されていますが、PCIeやUSB3.0のようなインターフェースを介して高速システムやモジュール間の相互接続は、秒間数ギガビット以上のデータレートを持つことがあります(これが高速システムや高速設計という用語の由来です)。 さらに、現代の高データレート相互接続のほとんどは、少数の信号線のみを使用するシリアル信号を使用します。そのようなシリアル線の一つが図1に示されています。いくつかの標準では複数の線が必要であり、ほとんどの場合、これらの線は差動ペアとして作られます。そのような標準の良い例はPCIeやJESD204です。 図1:シリアル高データレートリンク;送信機、受信機、および伝送路のインピーダンスマッチングは信号完全性にとって基本的です 高速設計の原則は、信号データレートとこの信号によって占められる帯域幅との間に直接的な関係があるため、無線周波数設計に似ています - データレートが高いほど、そのような信号によって占められる帯域幅も広くなります。また、高速信号の立ち上がり時間と立ち下がり時間は、しばしば1ns以下で、スイッチング周波数は数GHzを超えることがよくあります。このような信号は、SPI、I2C、RS232などの低速規格で使用される信号とは異なる方法でPCBを伝播します。信号の帯域幅を念頭に置き、送信機(例:ADCのJESD204Bインターフェース)から受信機(例:FPGAの入力ピン)まで、データリンクの忠実度が維持されるように、PCBを正しく設計するためには、重要な注意が必要です。最も一般的には、LVDS(低電圧差動信号)規格が、高データレートモジュールやシステムを相互接続するため、または高速信号の標準化された仕様(例:電圧変動、論理レベル、インピーダンスなど)を提供するために使用されます。 高速信号の性質は、PCB上で伝送されるリンクと信号の高忠実度を保証するために、PCBと回路図の異なる設計ツールを必要とします(設計に費やされる時間の削減とともに)。信号の高忠実度は、信号の品質特性に関連するもので、信号整合性と呼ばれ、PCB/SCHの開発中だけでなく、専用ツールを使用したラボでの信号測定によっても検証できる伝送信号の多数のパラメータから構成されます。 Altium Designerは、高速プロジェクトに関連するすべての活動をサポートし、例えば以下のような多数の機能を提供することにより、信号整合性の制御手段を提供します: 回路図とPCBでの差動ペアの定義の可能性; 長さマッチングを伴うPCBエディタでの差動ペアのルーティング; 差動および単線信号線の制御インピーダンストラックの定義; 差動ペア内およびバス内での信号線の長さ調整; 信号整合性と高速のためのシミュレーションツールとDRCチェック; 消散因子、誘電率定数、銅の粗さを含むインピーダンスプロファイルでのPCBスタックアップの定義の可能性; コンポーネントの伝播遅延の定義の可能性 など。 これらの機能は、信号完全性に関連する設計エラーを軽減し、設計フェーズでの柔軟性を提供し、プロトタイピングコストを削減し、製品の市場への納品を加速させるのに役立ちます。 記事を読む
シグナル・インテグリティ_記事 2 高速PCB設計:信号整合性、EMI軽減、および熱管理の確保 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア 高速信号の整合性は、現代のPCB(プリント回路基板)設計において重要であり、性能、信頼性、およびコンプライアンスに影響を与えます。高速PCBを設計するには、クロストーク、電磁干渉(EMI)、および熱管理などの信号整合性の問題を管理する必要があります。この記事では、クロストーク、グラウンドプレーン戦略、電磁干渉(EMI)、および熱管理を含む高速信号整合性のいくつかの重要な側面を探り、実用的な洞察と例を提供します。これらの概念をさらに深く掘り下げ、拡張された戦略と詳細な例を提供しましょう。 電磁結合とクロストーク 電磁結合:隣接するトレースの信号は、互いに電磁場を誘導することができ、干渉を引き起こします。この現象は電磁結合として知られており、高い周波数でより顕著になります。例えば、密接に配置された高速データラインを持つPCBを考えてみましょう。あるトレースが高周波のクロック信号を運び、隣接するトレースが敏感なデータ信号を運ぶ場合、クロック信号によって生成された電磁場はデータ信号にノイズを誘導し、データエラーを引き起こす可能性があります。 トレースの近接性:信号トレースが互いに近いほど、クロストークの可能性が高くなります。この干渉を減らすためには、トレース間に適切な間隔を保つことが重要です。例えば、高速イーサネットPCBでは、ペア内の信号整合性を確保するために差動ペアが密接に配線されます。しかし、異なるペア間ではクロストークを防ぐために十分な間隔が保たれます。 高周波信号:高い周波数は、より強力な電磁場を生成し、クロストークを悪化させる可能性があります。信号周波数が増加するにつれて、適切なレイアウトと間隔を確保することがますます重要になります。例として、RF回路設計では信号がギガヘルツ周波数に達することがあります。RF信号トレースを他のデジタルまたはアナログトレースから分離して干渉を防ぐために特別な注意が必要です。 不十分なグラウンディング:不適切なグラウンディングはクロストークへの感受性を高めます。固定された連続的なグラウンドプレーンは、リターン電流のための低インピーダンスパスを提供し、信号干渉のリスクを減少させます。例えば、多層PCBでは、信号層の直下にグラウンドプレーンが配置されます。これにより、リターン電流が明確なパスを持ち、クロストークの可能性を最小限に抑えることができます。 高速デジタル通信分析において使用されるアイダイアグラムは、開いたアイパターンを通じて信号整合性を示し、色のグラデーションが信号密度と性能を示しています。 EMI軽減技術 適切なPCBレイアウト: トレースのルーティングを最適化し、ループ領域を最小限に抑え、グラウンドプレーンを効果的に使用することで、EMIを大幅に削減できます。例えば、高速デジタル設計では、重要な信号トレースをグラウンドプレーンの間に挟まれた内部層にルーティングします。これによりループ領域が最小限に抑えられ、EMIに対する効果的な遮蔽が提供されます。 フィルタリング: フェライトビーズやキャパシタなどのフィルタを実装することで、高周波ノイズを抑制し、EMIを減少させることができます。例えば、フェライトビーズは電源ラインに配置され、高周波ノイズをフィルタリングし、それが敏感なアナログ回路に伝播するのを防ぎます。 コンポーネントの配置: 騒音の多いコンポーネントを敏感なエリアから離して配置し、適切な遮蔽を確保することで、EMIを軽減することができます。例えば、混合信号PCBでは、アナログコンポーネントを一方の側に配置し、デジタルコンポーネントを反対側に配置し、その間にグラウンドプレーンを配置して隔離を提供します。 金属シールド: 騒音の多いコンポーネントを金属シールドで囲むことで、EMI放射を防ぎ、近くの敏感な回路を保護できます。例えば、PCB上のRFモジュールは、電磁放射を含むためにしばしば金属シールドで覆われ、隣接する回路との干渉を防ぎます。 グラウンディングとボンディング: 適切なグラウンディングとボンディングを確保することで、リターン電流の明確な経路を提供し、グラウンドループの可能性を減少させることにより、EMIを最小限に抑えます。例えば、グラウンディングストラップやビアを使用して異なるグラウンドプレーンを接続し、PCB全体にわたってリターン電流の低インピーダンス経路を確保します。 フィルタ設計: 容量性および誘導性フィルタを使用することで、望ましくない周波数を効果的にブロックし、EMIを減少させ、信号の整合性を向上させます。例として、入力ラインに使用されるローパスフィルタは、高周波ノイズをフィルタリングし、敏感なコンポーネントに到達する信号の周波数のみを確保します。 記事を読む