System Engineers & Architects

In PCB design, a System Engineer is a highly skilled professional who oversees and performs complete engineering of an entire system. They possess in-depth knowledge of how a PCB interacts with on-board firmware, mechanical elements of the board, other PCBs, and external software or web applications. While they may not be experts in every area, they must have a deep understanding of each component to define performance, test, and qualification requirements that will be engineered by EEs, embedded developers, and PCB designers.

System Engineers in PCB design may also be referred to as System Engineering Managers or System Architects. These job titles reflect the focus on the overall architecture and design of a complex system, as well as the need to manage and coordinate the efforts of multiple teams and specialists. The role of a System Engineer is critical to the success of any project, ensuring that all components of the system work together seamlessly and meet the necessary performance and reliability standards.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
航空宇宙および防衛:マイクロエレクトロニクスにおける意外な投資家 航空宇宙および防衛:マイクロエレクトロニクスにおける意外な投資家 1 min Blog 購買・調達マネージャー システムエンジニア/アーキテクト エンジニアリング/テクノロジー幹部 +1 購買・調達マネージャー 購買・調達マネージャー システムエンジニア/アーキテクト システムエンジニア/アーキテクト エンジニアリング/テクノロジー幹部 エンジニアリング/テクノロジー幹部 電気技術者 電気技術者 航空宇宙と防衛の間の共生関係が、マイクロエレクトロニクスの世界を革命的に変えています。 航空宇宙と防衛は常に技術革新の最前線にありました。第二次世界大戦中のレーダーシステムの開発から現代のステルス航空機に至るまで、これらの産業は技術の限界を絶えず押し広げてきました。この革新の中心にあるのは、小規模な電子部品やシステムの設計と製造を含む マイクロエレクトロニクスの役割です。 マイクロエレクトロニクスの開発と進歩 航空宇宙と防衛企業がマイクロエレクトロニクスに投資している主要な分野の一つは、 ミニチュア化されたセンサーと アクチュエーターの開発です。これらのデバイスは、航空機や宇宙船の搭載システムのデータ収集、環境条件の監視、および制御に不可欠です。航空宇宙と防衛のエンジニアは、より小さく、より軽く、よりエネルギー効率の高いセンサーを設計することができます。 さらに、マイクロエレクトロニクスの統合により、航空宇宙と防衛システム内の自律性と人工知能(AI)の大幅な進歩が可能になりました。 (UAVs)ドローンは、ナビゲーション、通信、およびペイロード配送のためにマイクロエレクトロニクスに大きく依存しています。 ハードウェアの進歩に加えて、航空宇宙と防衛企業は、サイバーセキュリティとデータ保護を強化するためにマイクロエレクトロニクスを活用しています。現代の航空機と防衛システムの接続性が高まるにつれて、サイバーセキュリティは優先事項となっています。マイクロエレクトロニクスは、暗号化、認証、および侵入検出メカニズムの実装において重要な役割を果たし、サイバー脅威の増加する洗練に対して機密情報を保護します。 ソフトウェアも、現代の航空宇宙と防衛システムにおいて重要な役割を果たしています。マイクロエレクトロニクスにより、洗練されたアルゴリズムや計算モデルの開発が可能になります。飛行制御ソフトウェアから任務計画および意思決定アルゴリズムに至るまで、マイクロエレクトロニクスは敏捷性、適応性、および回復力を備えたソフトウェア定義システムの基盤を作ります。 マイクロエレクトロニクスの統合により、航空宇宙と防衛における新技術の出現が促進されました。例えば、複雑なコンポーネントを迅速にプロトタイピングおよび生産することを可能にする付加製造などです。 航空宇宙と防衛におけるマイクロエレクトロニクスの重要性は、国家安全保障と経済競争力にも影響を及ぼしています。世界中の国々が航空宇宙と防衛技術での優位性を競う中、戦略的優位を維持するためにはマイクロエレクトロニクスへの投資が不可欠です。 さらに、宇宙の商業化の拡大と衛星の普及は、航空宇宙と防衛企業にマイクロエレクトロニクスを活用する新たな機会をもたらしています。マイクロエレクトロニクスの進歩を活用することで、企業は地球観測、通信、およびリモートセンシングアプリケーションのための手頃な価格でスケーラブルなソリューションを開発することができます。 航空宇宙と防衛システムへのマイクロエレクトロニクスの統合は、挑戦なしではありません。航空宇宙と防衛アプリケーションで遭遇する過酷な運用環境、例えば極端な温度、放射線、振動などは、マイクロエレクトロニックコンポーネントの信頼性と耐久性に対して重大な懸念を引き起こします。さらに、現代のシステムの増大する複雑さと相互依存性は、厳格なテストと検証プロセスを通じて対処しなければならない新たなリスクと脆弱性をもたらします。 サプライチェーンのリスク 航空宇宙および防衛セクターでは、特にシステムへのマイクロエレクトロニクスの統合に関して、サプライチェーンのリスクも重大な懸念事項です。この文脈におけるサプライチェーンリスクに関する特定の懸念事項は以下の通りです: サプライチェーンの中断とレジリエンス。自然災害、サイバー攻撃、輸送のボトルネックなど、サプライチェーンの中断は広範囲にわたる影響を及ぼす可能性があります。サプライヤーの多様化、重要部品のバッファ在庫の維持、対応計画の実施など、強固なサプライチェーンレジリエンス戦略を開発することは、中断の影響を軽減し、事業継続を確保するために不可欠です。 知的財産の保護。 サプライチェーン全体での機密情報と独自設計の保護は、偽造、盗難、無許可の複製からの防御において重要です。適切な知的財産保護が不足していると、イノベーションと競争力が損なわれる可能性があります。 記事を読む
マルチボード設計におけるPCBハーネス設計機能の重要な役割を明らかにする マルチボード設計におけるPCBハーネス設計機能の重要な役割を明らかにする 1 min Blog PCB設計者 システムエンジニア/アーキテクト PCB設計者 PCB設計者 システムエンジニア/アーキテクト システムエンジニア/アーキテクト 電子技術の絶えず進化する風景の中で、革新と効率への要求は技術の限界を押し広げ続けています。しかし、技術が進化し、製品がより複雑な機能を要求するようになると、昔ながらの単一ボード設計ではしばしば不十分になります。ここで、複数のPCBが互いに接続されて一つのユニットとして機能するマルチボード設計が登場します。この洗練された設計は強力ですが、シームレスで効率的な接続のためには、頑丈なハーネス設計が求められます。ここでは、PCBハーネス設計の能力の重要性と、それがマルチボード設計の成功に不可欠である理由について詳しく説明します。 PCBハーネス設計の本質 電子デバイスが単一で孤立したエンティティであった時代は過ぎ去りました。今日では、デバイスは通信し、データを共有し、他のシステムとシームレスに統合することが期待されています。このパラダイムシフトは、複数のPCBが互いに接続され、電気的、機械的、機能的な接続を共有する一体的な電子システムを形成するマルチボード設計の台頭を促しました。消費者向け電子機器から産業用途に至るまで、マルチボード設計はモジュラリティ、スケーラビリティ、および改善された信頼性を含む数多くの利点を提供します。 マルチボード設計の中心には、PCBハーネスがあります。これは、異なるボードが効果的に通信し、協力するために必要な複雑な相互接続の網です。PCBハーネス設計には、最適な信号整合性、最小限の電磁干渉(EMI)、および効率的な電力分配を確保するために、コネクタ、ケーブル、および信号トレースの思慮深い配置が含まれます。設計プロセスでは、信号速度、インピーダンスマッチング、熱管理、電磁両立性(EMC)などの要因を考慮する必要があります。 なぜマルチボード設計なのか? 現代の電子製品は小型化しつつも、より強力になっており、これはユニークな課題を提示します。すべての必要なコンポーネントを単一のPCB上に統合することは、スペースの制約、信号干渉、または熱問題のために実現可能ではないかもしれません。ここでマルチボード設計が登場します。複雑なシステムを複数の相互接続されたPCBに分割することで、エンジニアはいくつかの利点を実現できます: モジュラリティ:マルチボード設計により、各PCBを独立して設計、テスト、および改良できるモジュラー開発が可能になります。マルチボードシステム内の各PCBは、スタンドアロンユニットとして設計および開発することができます。これにより、エンジニアはそのボードの特定の機能と要件に焦点を当てることができ、システム全体の複雑さに制約されることなく作業できます。モジュラー設計では、1つのPCBに問題が発生した場合、システム全体を解析することなく、特定して修正することができます。このセグメンテーションは、デバッグとトラブルシューティングのプロセスを簡素化します。 パフォーマンスの最適化:マルチボードシステムにより、特定のタスクや機能に特化したPCBを設計することができます。これにより、各ボードがその主要な役割、たとえば信号処理、電力管理などに最適化されます。各PCBが特定の役割に最適化されると、システム全体の効率とパフォーマンスが向上します。これにより、冗長性が最小限に抑えられ、各ボードが最高のパフォーマンスを発揮します。 メンテナンスとアップグレードが容易:マルチボード設計では、単一のPCBが故障したり時代遅れになったりした場合、システムの残りの部分に変更を加えることなく(例:WiFiモジュールのアップグレード)、交換またはアップグレードすることができます。このモジュラーなアプローチにより、システム全体をオーバーホールしたり交換したりする必要がなくなり、時間とコストを節約できます。技術が進化するにつれて、システムの特定の部分が更新を必要とするかもしれません。マルチボード設計では、これらの更新がより管理しやすく、費用もかからずに、必要なPCBのみを変更または交換するだけで済みます。 熱の放散:マルチボードシステムでは、大量の熱を発生するコンポーネントを別々のボードに戦略的に配置することができます。このセグメンテーションにより、熱の管理と分配がより効果的になります。熱を発生するコンポーネントを個々のPCBに分離することで、あるコンポーネントの熱が別のコンポーネントの性能に悪影響を与えるリスクが減少します。このレイアウトは、潜在的な過熱問題を減らすことで、システムの寿命と信頼性を向上させることができます。 PCBハーネス設計能力の重要な役割 マルチボード設計を扱う際には、高度なPCBハーネス設計能力を活用することが不可欠です。その理由はこちらです: 信号整合性: 複雑さが増したマルチボードシステムでは、信号の歪みや喪失によって引き起こされるシステムの不具合や全面的な故障を防ぐために、信号の整合性の維持が重要です。高度なハーネス設計機能を備えたECADツールは、高度なインピーダンス制御機能も含んでおり、エンジニアにマルチボード全体でこの整合性を守るために必要なツールを提供します。これにより、トレースのルーティングを最適化し、潜在的な信号干渉を減少させることができます。これらのツールは、異なるトレースからの信号が衝突する可能性があるクロストークのような問題を軽減するのにも役立ち、トレースの空間的な分離と効果的なシールドの設計を容易にします。 電力分配: マルチボードシステムでは、すべての相互接続されたPCBにわたって一貫して信頼性の高い電力の分配が、最適な機能性にとって非常に重要です。ハーネス設計機能を活用することで、エンジニアは正確な電力プレーンとルートを設計し、各PCBが必要な電圧/電流を得られるようにします。この戦略的なアプローチは、電力関連の課題、例えば電圧の低下やサージなどを抑制し、全体的なシステムの性能を守ります。 機械統合: 複数のPCBを一つのデバイスエンクロージャに収める多板設定では、物理的な干渉を避けるために慎重な計画が必要です。電気的な側面だけでなく、真の3Dモデリング機能を含むハーネス設計機能を備えたECADツールを使用することで、エンジニアはシステムの物理的な構成とレイアウトをプレビューし、可視化することができ、コンポーネント間の潜在的な衝突を見つけて対処し、適切なPCBのフィット、フォーム、および機能を確保するのに役立ちます。 ボード間通信: 複数のボードシステムが調和して動作するためには、効果的なPCB間通信が重要です。ハーネス設計ツールはこれに中心的な役割を果たし、高速インターフェース、コネクタ、およびボード間の迅速かつ信頼性の高いデータ転送のためのバスアーキテクチャの開発を支援します。さらに、正確な接続管理機能を含むECADツールを使用することで、設計者は全体的な製品設計が進むにつれて、複数ボードの接続性を簡単に定義、変更、チェック、および更新することができます。 記事を読む