Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
Home
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Highlights
All Content
CoDesign and CoEngineering (ECAD/MCAD Collaboration)
Component Management and Libraries
Data Management and Version Control
Manufacturing Outputs and Compliance
PCB Design and Layout
Simulation and Analysis
Filter
Clear
Tags by Type
全て
ガイドブック
ニュースレター
OnTrack
ビデオ
ウェビナー
ホワイトペーパー
ソートリーダーシップ
Software
全て
Altium 365
Altium Designer
トレーニング
CircuitMaker
CircuitStudio
Concord Pro
Tasking
PDN Analyzer - 電流密度解析ツール (Legacy)
Non-Altium Products
PDNインピーダンス解析、およびモデリング:回路図からレイアウトまで
シグナルインテグリティーはよく話題になりますが、シグナルインテグリティーはパワーインテグリティーと密接に関連しています。これは、電源/電圧レギュレーターからのスイッチングノイズまたはリップルを減らすだけではありません。PCB内のPDNのインピーダンスにより、基板のコンポーネントが電源の問題が原因で設計どおりに機能しなくなる設計上の問題が明らかになります。 ここでは、PDNインピーダンス解析の基本モデルについて理解していきます。PDNインピーダンスのある程度、正確なモデルを構築できれば、コンポーネントに適したデカップリング ネットワークを設計し、PDNのインピーダンスを許容範囲内に保持できます。 PDNインピーダンス解析を行う理由 この記事をご覧の高速、および高周波設計者の方は、この質問に対する答えを既にご存じだと思います。しかし、技術的な需要の高まりに合わせ、全ての設計者が予想より早く高速および高周波設計者になることが考えられるため、PDNインピーダンスがPCBの信号の動作に与える影響を理解しておくことが重要です。残念なことに、この情報は必ずしも1つの場所に適切にまとめているわけではないため、ここで詳しく説明したいと思います。 簡単にまとめると、PDNインピーダンスは回路の次の側面に影響します。 電源バスノイズ。PCBの過渡電流が原因で生じる電圧リップル。PDNインピーダンスは周波数の関数であるため、スイッチングによって生じる電圧リップルも周波数の関数になることに注意してください。これらの過渡電流は、電圧レギュレーターからの出力のノイズレベルに関係なく発生する可能性があります。 電源バスノイズの減衰。場合によっては、電源バス上のリップルがリンギング(減衰不足過渡振動)として示されることがあります。これは、デカップリング コンデンサーのサイズが適切でない場合、またはデカップリング ネットワークでデカップリング コンデンサーの自己共振周波数が考慮されていない場合に発生する可能性がある1つの問題です。 必要なレベルのデカップリング。従来、コンデンサーは自己共振周波数が相対的に低い(100MHz以下)ために、TTLと高速のロジックファミリーを使用するPCBでデカップリングを確保するには不十分でした。そのため、設計者はデカップリングを確保するのに十分な静電容量を提供するために、プレーン間静電容量を使用していました。自己共振周波数がGHzの新しいコンデンサーを利用すれば、高速/高周波PCBでデカップリングを十分提供することができます。 電流リターンパス。リターン電流は最小抵抗(DC電流の場合)または最小リアクタンス(AC電流の場合)の経路をたどります。グラウンド ネットワークのインピーダンスはスペースによって異なり、信号トレースとPDN間の寄生結合に一部、依存します。 IRドロップ。電源およびリターン電流のDC部分では、PDNを構成する導体の固有抵抗により一定の損失が生じます。以下の画像はPDN解析結果の例で、特定の信号トレースの下を通るリターン電流と、同じGNDプレーンのDC電流を示しています。 タイミングジッター。信号の伝播時間は有限であるため、デカップリング コンデンサー、およびレギュレーターから引き出される電流がスイッチング コンポーネントに到達するまで時間がかかります。これらの信号がコンポーネントに到達すると、出力信号に干渉し、信号の立ち上がり時間にジッターを発生させる可能性があります。一般的に、パワーレールのノイズによるタイミングジッターは、ノイズの強度、およびレギュレーターとコンポーネント間の長さに応じて増加します。長いパワーレールでは、タイミングジッターが数ナノ秒で数百に達して、データの同期がとれなくなり、ビットエラー率が増加する可能性があります。 このPDNアナライザー出力の信号トレースに注目 PDNインピーダンス解析の簡略モデル
高速PCB設計においては、グラウンドプレーンのギャップを横切ってはいけません
電子機器やPCBのフォーラムをよく閲覧していますが、同じ質問が何度も何度もされています。なぜグラウンドプレーンの割れ目を越えてトレースを引いてはいけないのか?この質問は、ハイスピードPCB設計にちょうど足を踏み入れたばかりのプロのデザイナーからメーカーまで、誰もが尋ねます。プロの信号完全性エンジニアにとって、答えは明らかでしょう。 長年のPCBレイアウトエンジニアであろうと、たまにデザインする人であろうと、この質問への答えを理解することは役立ちます。答えは常に絶対的な表現で枠付けられます。PCB設計の質問に絶対的な用語で答えることはあまり好きではありませんが、この場合は答えが明確です:グラウンドプレーンの隙間を越えて信号をルーティングしてはいけません。さらに詳しく掘り下げて、なぜグラウンドプレーンの隙間を越えてトレースを引いてはいけないのか理解しましょう。 グラウンドプレーンの隙間:低速および高速設計 この質問に答えるには、DC、低速、高速での信号の振る舞いを考慮する必要があります。これは、各タイプの信号がこの基準面で異なるリターンパスを誘導するためです。信号がたどるリターンパスは、基板内で生成されるEMIに及ぼす重要な影響、および特定の回路がEMIに対してどれほど感受性を持つかについて、いくつか重要な影響を及ぼします。PCB内でリターンパスがどのように形成されるかをよりよく理解するために、 この記事と、Francesco Podericoからの 役立つガイドをご覧ください。 PCB内でリターン電流がどのように形成されるかを理解すれば、それがEMIと信号の整合性にどのように影響するかを見るのは簡単です。ここで重要な理由です—そしてそれはグラウンドプレーンのギャップを越えるルーティングに関連しています。ボード内のリターン電流によって形成されるループは、2つの重要な振る舞いを決定します: EMIの感受性。回路内の供給電流とリターン電流によって作られるループは、ボードのEMIに対する感受性を決定します。大きな電流ループを持つ回路は、より大きな寄生インダクタンスを持ち、放射されるEMIに対してより感受性が高くなります。 スイッチング信号におけるリンギング。回路内の寄生インダクタンスは、信号がレベル間で切り替わる際の 過渡応答の減衰レベルを決定します。回路内の寄生キャパシタンスと併せて考えると、これら二つの量は過渡応答の自然周波数と減衰振動周波数を決定します。 DC、低速、高速信号を詳しく見てみましょう: DC電圧/電流 基板がDC電源で動作する場合、リターン電流は信号トレースの直下ではなく、供給リターンポイントに直線的に戻るため、リターンパスを実質的に制御することはできません。これは、大きな寄生インダクタンスのために基板がEMIに弱くなることを意味します。電源が切り替わらないため、過渡振動がないと思われがちですが、マイクロストリップトレースがグラウンドプレーンのギャップを越えてルーティングされている場合でも、EMIの感受性の問題は依然として存在します。DCループのインダクタンスをできるだけ低く保つべきであり、ループインダクタンスを減らすためには、グラウンドプレーンのギャップを越えるルーティングを避けるのが最善です。 低速信号 DC信号と同様に、リターンパスは回路のループインダクタンスを決定し、これが EMI感受性および過渡応答の減衰を決定します。ループインダクタンスが大きい場合、減衰率は低くなり、DC信号の場合と同様に、グラウンドプレーンのギャップを越えてルーティングするとループインダクタンスが増加し、信号の整合性、電力の整合性、およびEMIに影響を与えます。 残念ながら、低速信号はある種の遺物であり、TTL以上の速度のロジックを使用するすべてのボードは高速回路として振る舞います。低速信号(一般に数十nsの立ち上がり時間とそれより遅い)では、特定の回路のリンギング振幅は通常、低く抑えられていたため、気づかれないことが多かったです。したがって、信号がグラウンドプレーンのギャップを越えてルーティングされない限り、ループインダクタンスは通常、激しいリンギング、EMI感受性、および関連する電力整合性の問題を防ぐのに十分に低かったです(下記参照)。 高速信号 低速で動作するように設計された基板に高速信号を流すと、与えられた回路ループのインダクタンスに対して、リンギングの振幅が大きくなります。これは、基板内のループインダクタンスをできるだけ小さく保つ必要性を再び示しています。目標は、与えられた相互接続においてリンギングの振幅を減少させるために、できるだけ多くの減衰を提供することです。再び、グラウンドプレーンのギャップを越えてルーティングすることで、ループインダクタンスの増加を避けることができます。さらに、高速回路を運ぶ信号層の下にグラウンドプレーンを配置することで、相互接続全体を通じてループインダクタンスができるだけ低くなるようにする必要があります。
Thought Leadership
回路設計における過渡信号解析のためのツール
適切なシミュレータを使用すれば、これらの回路で過渡信号解析を行うことができます。 私はまだ最初の微分方程式のクラスを覚えています。最初に議論されたトピックの一つが、多くの異なる物理システムで発生する減衰振動回路と過渡信号応答でした。PCB内のインターコネクトや電源レールでの過渡応答は、ビットエラー、タイミングジッター、および他の信号整合性の問題の原因となります。過渡信号解析を行うことで、完璧な回路を設計する道のりでどの設計ステップを踏むべきかを決定できます。 単純な回路での過渡信号解析は、手作業で調べて処理することができ、時間の関数として過渡応答をプロットすることができます。より複雑な回路は、手作業で分析するのが難しい場合があります。代わりに、シミュレータを使用して回路設計中に時間領域の過渡信号解析を行うことができます。適切な設計ソフトウェアを使用すれば、コーディングスキルも必要ありません。 回路設計における過渡現象の定義 正式には、過渡現象は、一連の結合された一次線形または非線形微分方程式(自律的であるか非自律的であるかにかかわらず)として記述できる回路で発生する可能性があります。過渡応答はいくつかの方法で決定できます。私の意見では、ポアンカレ・ベンディクソンの定理を使用して、任意の結合方程式セットに対して手作業で簡単に処理できるため、過渡応答のタイプと存在を簡単に判断できます。このような操作が得意でない場合でも心配はいりません。SPICEベースの回路シミュレーターを使用して、時間領域で過渡挙動を調べることができます。 フィードバックのない時間不変回路の過渡応答は、3つの領域のいずれかに分類されます: 過減衰:振動のない遅い減衰応答 臨界減衰:振動なしで可能な限り速い減衰応答 減衰振動:減衰し、振動する応答 これらの応答は、時間領域シミュレーションの出力で簡単に確認できます。SPICEシミュレーターを使用して、回路図から直接過渡信号分析を実行できます。 時間領域での過渡信号分析のためのツール 回路の挙動を調べ、過渡信号解析を探求する最も簡単な方法は、時間領域シミュレーションを使用することです。このタイプのシミュレーションは、ニュートン・ラフソン法または数値積分法を使用して、時間領域で回路のキルヒホッフの法則を解くことにより行われます。これは、シミュレートされる回路の形式に依存します。これらおよびその他の方法は、SPICEベースのシミュレータに統合されており、明示的に呼び出す必要はありません。過渡解析のもう一つの方法は、回路のラプラス変換を取り、回路の極と零点を特定することです。 回路シミュレーションの観点からは、回路図から直接過渡信号解析シミュレーションを実行できます。これには、回路の挙動の2つの側面を考慮する必要があります: 駆動信号。これは、過渡応答を引き起こす入力電圧/電流レベルの変化を定義します。これには、2つの信号レベル間の変化(例えば、スイッチングデジタル信号)、電流入力信号レベルのドロップまたはスパイク、または駆動信号の任意の変化が含まれる場合があります。正弦波信号や任意の周期波形で駆動することも考慮できます。また、信号が2つのレベル間で切り替わる際の 有限立ち上がり時間も考慮できます。 初期条件。これは、駆動信号が変動する瞬間または駆動波形がオンになった瞬間の回路の状態を定義します。これは、時刻 t = 0 で、回路が初めて定常状態(つまり、回路内に以前の過渡応答がなかった)にあったと仮定します。初期条件が指定されていない場合、t
OnTrack Newsletters
初公開!Altium Designer 20の新機能
Judy Warner: アルティウムのVP of Corporate MarketingであるLawrenceからインタビューを始めたいと思います。今回のリリースで最も注目すべき点はどこでしょう? Lawrence Romine: 早くから寄せられているユーザーからのフィードバックを踏まえると、インタラクティブ配線の新機能です。これによって、Altium Designerは世界No.1の基板設計CADとしてさらにリードを広げることになるでしょう。Altium Designerの現在のバージョンで、すでにあらゆる機能を対応しているものの、Altium Designer 20では全体的なユーザー エクスペリエンスが向上しています。これまでを超える洗練されたスムーズな操作性は、どなたにもお気づきいただけるでしょう。高速設計や高密度設計では、使いやすさとスピードという点でまったくストレスなく仕事を進められます。Altium Designer 19では、レイヤースタックマネージャーと部品ライブラリに導入されたソルバー技術によって機能が強化されましたが、そこに今回の改良を組み入れることでデータ速度スペクトルの上端の遅延機能が一新されました。 Warner: 次は、アルティウムのTechnical Marketing DirectorであるBenにお話を聞いてみたいと思います。日常業務に直接的に影響があり、ユーザーから好評を得られると考えられるのはどんな機能でしょう?
45
Videos
Creepage Voltage Rule
50
Videos
Return Path Checking
Pagination
First page
« First
Previous page
‹‹
ページ
139
現在のページ
140
ページ
141
ページ
142
ページ
143
ページ
144
Next page
››
Last page
Last »
他のコンテンツを表示する