Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
PCBでの日本語入力とTrueTypeの利用 PCBでの日本語入力とTrueTypeの利用 1 min Blog Altium DesignerのPCBエディタは、回路図エディタと同様にメニューとダイアログボックス、ツールヒントが日本語化されています。そして、日本語TrueTypeによる文字入力もサポートされていますので、さまざまな書体を使ってPCB上に日本語を書き込む事ができます。 フォントを選ぶ 日本語を使う為に必要な事は、ただ単に日本語フォントを選ぶ事だけです。このPCBエディタの初期設定は、日本語書体が含まれていないストロークフォント(Stroke)になっていますので、日本語フォントの選択は必須です。 このフォントの選択は、文字を書き込む際に [Properties]パネルを使って、その都度行う事ができます。 [Properties]パネルでフォントを選ぶ PCB上の文字(String)を選択した状態で[Properties]パネルを開いて使用するフォントを選ぶ。 例えば、[Micron]の代わりに[マイクロン]と記入したい場合などには日本語フォントを選ぶ。 欧文フォントと日本語フォントによるテキストの配置例 使用するフォントによる見映えの違いを確認するために、PCB上に日本語を書き込んでみました。 使用するフォントによる見映えの違い Altium DesignerのStrokeフォントと7種類のTrueTypeを使って配置した文字のスクリーンショット。 Strokeフォントの文字サイズ(Text Height)は、デフォルト値の60milで、その他のフォントは全て 100milに設定。日本語の書体を持たないStrokeフォントとArialでは日本語が再現されない。 MS UI GothicとMS 記事を読む
Altium Designerの日本語環境とTrueTypeの利用 Altium Designerの日本語環境とTrueTypeの利用 1 min Blog 今や日本でも、海外で開発されたソフトウェアが当たり前のように使われています。特に電子機器の開発に使用される専門性の高いツールは、ほとんどが海外製品です。そこで注意しなくてはならないのが日本語環境への対応です。アルファベットと数字で埋め尽くされた回路図であっても、日本語化が不十分だといろいろと不都合が出てきます。 しかし、Altium Designerでは画面の日本語表示はもちろんのこと、回路図やPCBにも日本語を自由に書き込めますので心配は無用です。 Altium Designerのユーザーインターフェイス Altium Designerのユーザーインターフェイスは、メニューとダイアログボックス、そして、ツールヒントが日本語化されています。ツールヒントとは、マウスのカーソルをツールボタンに当てた時に表示される機能説明です。ただし、初期設定は英語表示になっていますので、何もしなければ画面は英語のままです。 この英語の画面は、次の手順で日本語化できます。 Altium Designerを起動後、メニューバーの右端付近にある[歯車ボタン]を押して[Preferences]画面を開きます。これにより、[System-General]というタイトルのページが表示されるはずです。もし、他のページが現れた場合には、左側に表示されるツリーから[System]を選び、その下に展開したツリーから[General]を選んでください。 この設定ページが表示されたら、その一番下のエリアにある[Localization]グループの[Use localized resources]にチェックを入れます。さらに、この下には、[Display localized dialogs]と [Display localized help only]、その右に[Localized menus]というオプションがあります。初期値として、[Display 記事を読む
Altium Designerの回路設計効率の向上に役立つ5つのヒント Altium Designerの回路設計効率の向上に役立つ5つのヒント 1 min Blog Altium Designerには、回路図作成プロセスの生産性を向上させる多くのショートカットと機能があります。ここで説明する機能を理解し活用することで、回路図作成プロセスを速め、できればそれを楽しんでいただけることを願っています。回路設計効率を向上させるために知っておくべき5つの重要な方法を以下に示します。 シンボルの切り離しと移動: キー+クリック&移動。部品をワイヤから切り離して移動します。デフォルトでは、回路図内で接続済みのシンボルを移動すると、ワイヤもそれに従います。これはほとんどの場合便利ですが、配線を変更せずにシンボルのみを他の場所に移動する場合もあります。キーを押しながらシンボルをクリックしてドラッグすると、シンボルのみを移動できます。 シンボルの複製: キー+クリック&ドラッグ 。キー+クリック+ドラッグを使用して、回路図シート上のシンボルをすばやく複製します。これによりコンポーネントが複製されるだけでなく、デジグネータ番号が自動的に増加します。これは基本的にコピーおよびペーストコマンドと同じですが、はるかに高速で使いやすいことが分かります。一見些細なことのように思われるかもしれませんが、試してみるとその意味がお分かりになるでしょう。このコマンドを使うとコピー&ペースト操作が簡単にできます。 ネットの色の同期: [View] >> [Set Net Colors]。この機能は、回路図を確認する際に特に役立ちます。さまざまな色でネットを強調表示できるため、簡単に信号を追跡し、回路図を整理できます。そして、非常に優れていることには、ECOを介してこれらの色をレイアウトに反映できます。そのため、回路図で作業していたときに見慣れていたのと同じ色のネットをレイアウトでも使えます。2つの環境の間でネットの色が一貫していることで設計が容易になります。ネットの色付けをオフにする場合はいつでも、キーを使用してオン/オフを切り換えることができます。 類似オブジェクトの検索: オブジェクトを右クリックしてから[Find Similar Objects]。[Find Similar Objects]ダイアログを使うと、[Find Similar 記事を読む
PCB設計におけるシリコンフォトニクス統合の課題 PCB設計におけるシリコンフォトニクス統合の課題 1 min Blog シリコンフォトニクスは、シリコンICで使用されている製造プロセスをそのまま使用します 最近のIEEEカンファレンスでリチャード・ソレフと会い、電子・フォトニック統合回路(EPICs)の現状について話し合う機会を得ました。彼はしばしば「シリコンフォトニクスの父」と呼ばれており、その理由は明らかです。彼に優しく頼めば、シリコン上に直接フォトニック回路としての基本的な論理ゲートをどのように構築するかを教えてくれるでしょう。 今はシリコンフォトニクスにとって画期的な時期です。この技術は数十年前から存在していますが、現在、大量商業化の寸前にあり、大衆に提供されようとしています。標準的な電子部品で動作するシステムにシリコンフォトニクスを統合する前に、克服すべきいくつかのエンジニアリングの課題がまだあります。 ICおよびPCB設計における100 Gbps+の課題 ここまで読んでまだ混乱している人のために、いくつかの背景を説明します:フォトニック回路とは、光のみを使用して動作する回路要素です。これらの回路は、光学および電子工学のコミュニティで主要な話題です。12年前、設計者は銅を介して100 Gbpsでデータを転送できる単一リンクの作成について話していました。 銅は短距離で100 Gbpsのデータ転送を可能にすることがわかり、一方で光ファイバーは長距離で最適に機能します。遅い機器でも並列化を使用して、データレートを100 Gbpsや400 Gbpsに増加させることができます。100 Gbpsネットワークで動作するために必要な光学機器は、非常に特定の設計要件を持ち、すべての電子部品と普遍的に互換性があるわけではありません。 データレートが増加するにつれて、PCBやIC内の電気信号の整合性の問題がより顕著かつ目立つようになり、その結果、信号の立ち上がり時間が短くなります。ICレベルでは、データレートの増加に伴い、相互接続遅延時間、伝播遅延時間、およびクロストークの強度がすべて増加します。PCBレベルでは、クロストーク、 放射されたおよび伝導されたEMI、および熱管理が、高速設計の重要な考慮事項となります。光学部品は、電子部品で見られる同じ信号整合性の問題に悩まされない、より高帯域幅の解決策を提供します。電子IC設計におけるより大きな並列性は、光学部品によって提供されるより高帯域幅の解決策を必要とします。 フォトニック集積回路(PIC)と電子・フォトニック集積回路(EPIC)に注目してください。前者の回路は、多数のフォトニック要素を単一のパッケージに統合して、完全に光で動作するように設計されています。後者の回路は、光を使用して動作するように設計されていますが、これらの回路には電子要素が現れることがあります。したがって、これらの回路は、電子部品の帯域幅に応じて、標準的な電子部品ともインターフェースできます。 なぜフォトニクスで、なぜシリコン上なのか疑問に思うかもしれません。シリコン製造所とチップ製造能力の成熟度は、これらの伝統的な製造プロセスをフォトニック回路に即座に適応させることができることを意味します。もし私たちが近いうちにPICやEPICを見ることになるなら、それらは最も確実にシリコンフォトニクス技術に基づいて構築されるでしょう。 将来的には、これらのICをPICやEPICとインターフェースすることになるでしょう PCBでのシリコンフォトニクスの使用における課題 シリコンの素晴らしい点は、1550 nmの波長で透明であるため、1550 記事を読む
新しい多層アーキテクチャ:パワーメッシュ 新しい多層アーキテクチャ:パワーメッシュ 1 min Blog 現状を唯一の現実として受け入れてしまうのは面白いものです。それが私たちが経験してきた唯一の存在だからです。プリント回路設計において、多層アーキテクチャはそのような現状です。しかし、それは高速設計に適した唯一のアーキテクチャではありません。ヒューレット・パッカードでは、RFデザインの特性に基づいた高性能アーキテクチャの実験と実装を行いました。これは偶然ではありませんでした。なぜなら、私たちのPCB設計組織はIC設計組織ともリソースを共有していたからです。ある日、私はアーカンソー大学の一部であるHiDECのDr. Leonard Shaperによって書かれた論文をレビューしていました。それはInterconnected Mesh Power System (IMPS) [1,2,3]についてでした。これは、各層が電源グラウンドと信号グラウンドを含み、平面がない2層薄膜MCM基板の設計のために作られた高密度アーキテクチャでした。当時、10ミクロンのジオメトリに到達する唯一の方法は、薄いスパッタ金属と半導体フォトレジストリソグラフィを使用することでした。その時、私は思いました、「なぜ、FR4上で0.125mm(5ミル)のジオメトリでこれを試してみないのだろうか?それが機能するかどうかを見てみたい」と。図1は、3つのアーキテクチャと設計ルールを示しています。 私たちは現行の12層ディスクドライブボードにこのアーキテクチャを試し、部品を移動させることなく4層で設計を完了することができました。 わお!—思ったよりも簡単でした!ICデザイナーの友人たちが肩越しに見て、「よくやった—これが私たちが集積回路を設計する方法です」とコメントしました。RFの顧客も、「何も新しいことはない—これはオフセット共面ストリップライン構造だ—30年間使っている!」とコメントしました。ですので、私たちは新しいものを発明したわけではありませんでした(それを特許申請しようとしたときに学びました)が、従来の多層アーキテクチャよりも確実に性能が良く、密度が高く、低インダクタンスPDNも持っていました。私たちはそれを「POWER MESH」と呼び、‘私たちだけの’秘密として保持しました! 図1 a. 従来の多層アーキテクチャ;b. 2金属層のみのIMPSアーキテクチャ;c. 4層のHP Power Meshアーキテクチャ。 インピーダンス制御 図2aは単一の電源プレーンを示しています。次のステップは分割電源プレーン(図2b)です。Power 記事を読む