Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
すべてがアナログです すべてがアナログです 1 min Blog 「全部アナログだ!」と私は力説し、効果を出すためにしばしばテーブルを叩いた。部屋にいる私を知る人々は作業を続け、私を信じない人々は目を転がすことが見られたが、時々新入社員や学校を出たばかりの人が私の注意を引き、「デジタルはどうなの?」と尋ねることがあった。 時は1980年代半ば、私はコモドールビジネスシステムズでシニアデザインエンジニアとして働いており、それは私のミスが何百万もの製品に再現されることを意味していた。私は大学には行ったことがなく、ライセンスを持つテレビ修理技師としてキャリアをスタートさせ、ランクを上げていった。自分が独学だったと言うのは完全には正しくない。なぜなら、さまざまなエンジニアリング部門に入ると、私の周りの才能ある人々から学んだからだ。また、自分のミスであれ他人のミスであれ、ミスから学ぶことを心がけていた。 「ECL世代」の時代を飛ばして、「TTL世代」に移ると、デジタル的な意味合いで考える誘惑に駆られるようになりました。つまり、信号を「ハイ」または「ロー」と呼んだり、さらに短い言葉で「1」や「0」と呼ぶようになりました。簡単ですよね?もちろん、今ではSignal Integrity (SI)やPower Distribution Network (PDN)のような用語を知って使用していますが、当時は消費者向けや小規模産業機器のプロセッサーは比較的新しいものでした。 突然、デジタルは扱うがアナログは扱わないという新しい世代のエンジニアが現れました。私が後に知ることになるのは、彼らの多くがグラウンドループ、FCCの放射/感受性、電源設計、さらにはリセット回路まで自分たちの快適ゾーン外だと考えていたことでした。個人的には、仕事は全方位的であるべきだと考えており、私のチームに加わった適切に教育されたエンジニアに最初に教えたことは、チップの接合部温度をどのように計算するかでした。 例として、コモドールに着任した時、C116/C264/Plus4になる予定だったリセット回路の提案を見たところ、誰かがキャパシタを抵抗器に接続し、それを+5Vの電源からゲートの入力に繋いだ回路で構成されていました。私はこれでは絶対に機能しないと声を大にして主張しました。学校教育も受けていない長髪の若者が、そこで働き始めた最初の週にこれを言っている様子を想像してみてください。少なくとも、まだ仕事中に靴を脱ぎ始めていなかったです。 そこで、エンジニアが説明してくれました。彼は、ストレスが少ない環境へ移るところの退職予定のエンジニアでしたが、会社の創設者が新しいコンピュータに搭載できるチップの数を9個に制限していたとのこと。私は忍耐強く、それでも回路は機能しないと説明しました。コモドールの対応は、新しいコンピュータラインの責任者に私を任命し、問題を私のものにすることでした。私は専用のリセット回路として555タイマーチップを追加し、創設者は私を解雇しませんでした。結局のところ、私たちはそれがどんな数量でも、低くても高くても機能する必要がありました。 最新の怒りに話を進めると、私はCommodore C128の設計とハードウェアを担当しており、デュアルプロセッサシステム(デュアルグラフィックプロセッサーと合計144MBのDRAMを含む)を2層ボードに搭載し、それを数百万台もの量で動作させなければならなかったのです(そしてそれは1985年のことです)。問題の核心は、ほとんどの設計者が95%の場合や、ほとんどの電圧やチップの組み合わせで動作するものを作り出せるかもしれないが、200万回の2%の問題は、スキッドやスクラップの山になる機械が非常に多いということです。これらの数字は、チップのブランドやバリエーション、そして温度や電圧のあらゆる組み合わせに対する感度の問題を引き起こす可能性があります。 私は、聞く耳を持つ人に、彼らが「低い」と呼んでいたものは、ドライバーチップが最大で.4Vの出力を持つ可能性がある中で、チップによって見られる閾値電圧が.8Vであることを印象付けるために一生懸命働きました。これは、ノイズマージンに対してわずか.4Vしか残らないということです。私たちは、ORゲートが「よりノイズが多い」と冗談を言っていました。なぜなら、どちらの入力にも.4Vを超えるスパイクがあると、出力が無効になり始める可能性があるからです。 私たちが行っていたことの難しさをさらに増す事実は、消費者部門でマルチレイヤーボードを一度も、決して使用するとは思わなかったことです。それは、今日の基準では、私たちの電源トレースが単なる大きな信号トレースに過ぎなかったことを意味しており、電源と信号のトレースのインピーダンスは、レイアウトの運次第で大きく変わりました。 これは、悪い振る舞いを予測するための実用的なツールがなかった時代でした。その結果、私たちは振る舞いが悪いだろうと単に仮定していました。IC設計者でさえ、チップが回路図と一致しているかどうかを教えてくれるツールを持っておらず、チップを製造してテストすることでのみ、最終的な答えが得られました。システムについても同様で、何を持っているのかを見るためには、それを構築しなければなりませんでした。 新しい設計を始める際に私が持っていた二つの原則がありました。一つ目は、全ての電源とグラウンドをグリッド化することで、全てのチップは電源とグラウンドの両方に二つのパスを持つべきであり、これは理論上スタブが存在しないことを意味していました。二つ目は、実際には出発点であり、それは当時最も厄介な獣であったDRAMの配置と配線を行うことでした。全てのDRAMが正しく作られているわけではなく、全ての電源がその許容値を保持しているわけではない(DRAMはある面で電圧に敏感です)、そしてタイミングを生成するチップ自体に問題がありました。私たちの一つの優位点は、電源のPCBレイアウトがこれらの問題にも寄与しないようにしようとすることでした。 次に、マスタークロックを含むグラフィックチップを配置します。これはボード上で最も基本的な高周波数です。私たちは自動的にこの設計の部分を囲む小さなシールドを設計しました。私たちの罪が始まり、それらの罪を覆い隠す作業も始まりました。 終わった時、私たちは一般的に今日の基準では散らかった状態になっていました。そして再び、私たちのテストは数個や数千個を生産できるかどうかではなく、最低でも百万個が基準で、一般的には五百万個を超えていました。 高低に戻ると、当時の信号は鐘のように鳴ったり、途中で拾った反射やクロストークが半ダースも現れたりしました。基板上にはグラウンドやシールド、分離のためのスペースがこれ以上なく、スケジュール上でも「最初からやり直す」時間はもうありませんでした。これは、私たちが環境を理解し、適応する必要があることを意味していました。残念ながら、その時に私たちが行ったのは、正常に動作しているように見えるように「調整」することでした。DRAM制御信号の遷移など、重要な時期に落ち着く限り、アーティファクト(不具合)と共に生活しました。 記事を読む
EIPC: プリント基板技術専門家の欧州コミュニティ EIPC: プリント基板技術専門家の欧州コミュニティ 1 min Newsletters 6月中旬、非常にうれしいことに、私はオーストリアのレオーベンで開催されたEIPCカンファレンスに初めて参加してきました。EIPC(European Institute for the PCB Community)は、50年以上続く組織です。このグローバルな欧州エレクトロニクス業界を巻き込んだ活動を継続しながら、欧州エレクトロニクス業界およびサプライチェーンに貢献しています。この記事では、活気に満ちてダイナミックな組織の目的、活動の内容と範囲について、EIPCの技術ディレクターであるTarja Rapala氏に伺ったお話を紹介します。 TarjaTarpala氏 Judy Warner: EIPCの歴史や現在の目標、またどのような企業およびメンバーに対してサービスを提供しているか、などについてご説明ください。 Tarja Rapala: EIPCは、欧州のエレクトロニクス業界の専門家で構成されたプリント基板コミュニティのための欧州機関です。私たちは、会員の皆様にビジネスや技術に関する情報を交換する場を提供し、支援します。私たちの主要な目的の1つは、欧州の業界を世界規模で可視化し、また同時に欧州で起こっていることについてのニュースを広めることです。ドイツは、欧州のプリント基板業界において非常に強い立場にあります。ですから、ドイツで定期的に会合を開くようにしています。またドイツのFED協会と協力してドイツ語でワークショップも開催しています。さらに、欧州の他の地域でもワークショップを開催する計画を立てています。 EIPCは、WECC(World Electronic Circuits Council)に所属する独立組織で、ECWC(Electronic Circuit World 記事を読む
2019年の製造のための設計に関するトップ5のヒント 2019年の製造のための設計に関するトップ5のヒント 1 min Blog 最近、ある大手の電子業界ブログを閲覧していたところ、「製造のための設計」に関するトップ10の間違いについての記事を見つけました。面白くて斬新な内容かもしれないと思い、その記事を読みましたが、驚いたことに、それは10年前に読んだ記事のコピー&ペーストであり、その記事自体もほぼ10年前の記事の焼き直しでした。古い記事を再加工して「新しい」コンテンツとしてラベリングするのは好きではありません。なぜなら、それは誤った経験則や、さらに悪いことに、無効な「業界のベストプラクティス」を作り出し、永続させる主な方法だからです。電子業界は非常に急速に変化するため、10年以上前に書かれたほとんどのコンテンツは今や時代遅れです。これらの記事で言及されているトップの間違いのいくつかを見て、それらに光を当て、そして今日の業界基準に関連する実際のトップのヒントをいくつか考えてみましょう。 トップの間違いの中のトップの間違い 鋭角を避ける 2019年後半になりましたが、私たちは最も安価で些細なプロトタイプのPCBでさえ、エッチングプロセスに問題があったとしても、任意の電気的欠陥がある基板を排除するためにフライングプローブチェックを受ける時代にいます。以前読んだ古い記事が私たちに避けるよう警告した最大の間違いは、鋭角でした。なぜなら、それらは酸の罠を作り出す可能性があるからです。トナー転写と自宅でのエッチングを使用している場合、これは真実かもしれませんが、現代の製造方法では、これは問題になりません。 フォトアクティベートされたレジスト層を持つボードに使用される光活性エッチング溶液は、ボードファブで非常に一般的です。これらのエッチャントは、鮮明なシャープな特徴を与え、エッチャントが溜まっても、十分な光を得られないため活性化しません。家庭でも非常に簡単に光活性レジスト層を使用することができます。現代のエッチングプロセスは、過去に比べて酸の罠のリスクを大幅に減少させます。 ビア・イン・パッドを避ける 一般的には、ビア・イン・パッドを間違いだと考えています。しかし、その記事では、熱的な理由からビア・イン・パッドを使用すべきだった例を挙げていました。多くの高電流デバイスは、メーカーがフットプリントに対して推奨するほど、ビア・イン・パッドを必要とします。それが、パッケージから効率よく熱を取り除く唯一の方法です。 その記事では、ビア・イン・パッドを使用すると、すべてのはんだが吸い取られてドライジョイントが残ると主張していました。これは100%真実です。確かに毛細管作用によりはんだが引き抜かれますが、ビアの両側をテント処理することでこれを完全に防ぐことができます。特定のケースでは、パッドにはんだマスクを全くしたくない場合、パッドと反対側のビアだけをテント処理することができます。これは、0.4mmまでのビアに対してかなり信頼性がありますが、まだ不安な場合は、ビアの反対側にシルクスクリーンを追加することもできます。これにより、ビアが完全にキャップされることが保証されます。 偶然にも、パッド上のビアだけに注意すべきではありません。テント処理されていないビアをパッドの非常に近くに配置すると、そのビアがパッドからはんだを吸い取る可能性もあります。 複数の工具サイズの使用を避ける 製造業者が非常に厳しい公差で作業する場合、ボード上に似ているが完全に同一ではない穴のサイズを多用すると、ボードのコストが増加する可能性があるという記事の主張でした。しかし、今日のドリリング技術を見ると、これは真実からはほど遠いです。産業用PCBドリルのツールマガジンには、人類が知る限りのほぼすべてのマイクロドリルサイズが含まれており、ツールの交換は信じられないほど迅速です。たとえ13.5milと14milの穴がそれぞれの正確なサイズのドリルビットで穿たれたとしても、PCBシートごとに追加で数秒しかかからないかもしれません。一般的に、ボード製造業者は、これらの穴を公差要件内、または図面で指定した公差内である限り、すべての穴を一つのサイズに丸めます。 PCBのスロットについても同様です。非常に小さいスロット(30-40mil)を使用しても、または20milエンドミルでスロットの角を大きな工具で四角くするための別のフライス加工ルートを指定しても、ペナルティを課されたPCB製造業者にはまだ出会っていません。 パッド上のシルクスクリーンを避ける 密に配線されたボードでは、あるコンポーネントのシルクスクリーンが別のコンポーネントのパッドに乗るのを避けることは不可能かもしれません。この正確な理由から、私のAltiumライブラリでは、ピン1の指示器シルクスクリーンドットと、可能な限りコンポーネントの下にシルクスクリーン機能を使用して、向きを簡単に判断できるようにしています。まだ、パッドからシルクスクリーンを自動的にクリーニングしてくれる、または少なくともそれを希望するかどうか尋ねてくれる予算のある、または高価なボードハウスには出会っていません。 もしパッドにシルクスクリーンがあるボードを受け取った場合、そのパッドでのはんだの濡れ広がりに大きな問題を引き起こし、それが悪い接合を引き起こす可能性があります。しかし、今日の製造業者では、私が経験したことのない問題です。 パッド間にはんだマスクを追加しない この「間違い」を見ると、ただただ頭を振るしかありません。どうしてボード上のパッド間にマスクを追加するのを忘れることができるのでしょうか?Altiumやほぼすべての設計ツールがこれを自動で処理してくれます。多くの細ピッチコンポーネントは、パッド間にはんだマスクを許容しないクリアランスギャップを持っています。それにもかかわらず、Altiumがパッド間に1/1000ミル幅のマスクを生成するのを見たことがあります。Altiumのデフォルトの設計ルールでも、パッド間のはんだマスクを指定するのに完璧に機能します。 パッド間のマスクが小さすぎる場合、良心的な基板製造業者は進行する前に知らせてくれますし、あまり気にしない基板製造業者はその機能を削除してそのまま進めます。 サイズが間違ったフットプリント 数年間、私は実際に購入可能な部品をスキーマティックキャプチャレベルで設計に配置できる大規模なオープンソースのデータベースライブラリを公開してきました。完全で正確な3Dモデルと、Altiumの3Dボードビューおよび3Dボディの衝突チェックを使用すると、部品が衝突する設計を完成させることは非常に難しくなります。Concord 記事を読む