Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
Altium Designer 統合プラットフォームの機能 Altium Designer 統合プラットフォームの機能 1 min Blog プリント基板CADのAltium Designer統合プラットフォームは、各ツール共通のユーザーインターフェイスとしての機能を、包括的に提供します。ユーザーが対話編集を行ったり自動機能を利用したりする為に必要なドキュメントウィンドウやコマンドメニューなどの画面要素に加え、ライセンスとエクステンションを管理する為の機能を備えています。 ライセンスの管理 [License Management] ページでAltium Designerのライセンスを管理できます。このページには購入したライセンスの種類やコンディションなどの明細がリストされます。ユーザーはこのリストから使用するライセンスを選んで認証します。 [License Management]ページ:ユーザーアイコンをクリックしてメニューから [Licences…]を選択すると、[License Management]ページが開きます。 Altium Designerをお使いの方は、すでにこの [License Management] ページでライセンスを認証されているはずですが、単にライセンスを有効にするだけでなく、ライセンスタイプの変更やローミングモードへの切替えなど、より便利に使用するために役立つ機能を備えています。また、無償の評価版やビューワのライセンスもここで管理できます。 Altium Designerでは、On-Demand(オンデマンド)、Private Server(プライベートサーバー) 、Standalone(スタンドアロン)の3タイプのライセンスが用意されており、On-DemandとStandaloneのライセンスをここで管理できます。このうちのOn-Demandにはローミングというモードが用意されており、このモードの切り替えもこの画面で行います。 記事を読む
RF PCBで位相同期ループICをレイアウトする方法 RF PCBで位相同期ループICをレイアウトする方法 1 min Thought Leadership 通信システム、無線システム、および周波数合成が必要なその他のRFデバイスの一部として、位相同期ループはPCB設計において重要な役割を果たします。高周波トランシーバーや高速デジタルデバイスには、安定した内部制御可能なクロック信号を提供する統合VCOレイアウトとともに、統合された位相同期ループが含まれています。しかし、一部のPLL ICは、パッケージ内に統合VCOレイアウトを含む、個別のICとして利用可能です。合計すると、PLLはRF PCB設計において、復調、位相ノイズの除去、周波数合成におけるクリーンな波形の提供など、いくつかの重要なタスクを可能にします。 PCB内の位相同期ループは、他のRF PCBと同様に、寄生効果の影響を受ける可能性があり、設計者は個別の位相同期ループを使用している場合、賢明なレイアウト選択を行うべきです。 位相同期ループの使用目的は何ですか? 位相同期ループには、アナログ(RF)システムや、ボード全体で正確なクロックおよび信号同期が必要なシステムにおいて、いくつかの重要な機能があります。ここでは、位相同期ループの基本的な機能と、それらがRF PCBにおいて重要である理由をいくつか紹介します。 フェーズノイズの除去:フェーズロックループは、電圧制御発振器(VCO)によって提供される基準と同期することで、基準信号からフェーズノイズを除去するためにも使用できます。過去には、これらのタスクにいくつかの別々のコンポーネントを使用していましたが、現在のフェーズロックループはVCOのレイアウトをICに統合しています。 周波数合成:アナログまたはデジタルのフェーズロックループは、ある基準よりも高いまたは低い周波数での周波数合成にも使用できます。デジタル合成の観点からは、フェーズロックループを使用してデジタルパルスの繰り返し率を減少または増加させることができます。どちらの場合も、商用および実験用のフェーズロックループでGHzの10倍の振動/繰り返し率に達することができ、多くのRFアプリケーションをサポートできます。 FM信号の復調:フェーズロックループにFM信号が供給されると、VCOはその瞬時周波数を追跡します。ループフィルターステージ(下記参照)からの誤差電圧出力、つまりVCOを制御するものは、復調されたFM出力と等しくなります。 低速/低周波数では、特定のドライバーの位相ノイズは通常、それを補償するために位相同期ループを利用する必要がないほど低いです。主な原因は、PCBレイアウトレベルで修正できる他の問題によるものです。 位相同期ループの各コンポーネントの役割 位相同期ループは、アナログアプリケーションではVCOからの負のフィードバックを使用し、デジタルアプリケーションでは数値制御オシレータ(NCO)を使用します。アナログアプリケーションでは、VCOまたはNCOからの出力周波数は、それぞれ入力電圧またはデジタル入力に依存します。いずれの場合も、PLLからの出力は、参照入力信号との位相差に比例します。位相差(そして出力)が時間とともに変化しない場合、その二つの信号は同じ周波数でロックされます。 RFシステムでは、アナログVCOからの出力は入力電圧に依存するため、参照 クロック信号を変調するのに役立ちます。位相同期ループ内では、VCOはループフィルターを使用して特定の参照に効果的にロックします。アナログ位相同期ループでは、ループフィルターが所望の参照信号にロックするまでに時間がかかります(約100 nsに達します)。 ループフィルターからの出力は、位相同期ループ内でも特別な位置を占めます。VCOを使用して所望のキャリア信号にロックする場合、周波数または位相変調信号は通常、位相同期ループのロック時間よりもはるかに速い速度で変調されます。この場合、ループフィルターは、参照とVCO信号の瞬時位相差に比例するエラー信号を出力します。変調された参照信号がキャリアとして位相同期ループに入力されると、このエラー信号は実際に復調された信号です。 位相同期ループのブロック図 位相同期ループのためのPCBレイアウト 記事を読む
なぜ、そしてどのようにして次の設計でアルミニウムPCB基板を使用するか なぜ、そしてどのようにして次のスタックアップ設計にアルミニウムPCB基板を使用するか 1 min Thought Leadership アルミニウムは、ただのソーダ缶以上のものに使えます 30代になってからはあまりソーダを飲まなくなりましたが、コーラの缶を作る以外にもアルミニウムには多くの用途があることを知っています。その一つが、PCBのコアとしての熱管理のための材料としての使用です。アルミニウムは高い熱伝導率を持ち、他の受動的または能動的な冷却手段ではコンポーネントの温度を十分に低下させることができない場合に、PCB上のアクティブコンポーネントから熱を運び去るために使用することができます。 熱管理のためのアルミニウムPCBの使用 アクティブコンポーネントは大量の電力を消散させるため、CPUや大量のスイッチングトランジスタを持つ他のコンポーネントに冷却ファンを使用します。周囲温度が過度に高い場合、能動的な冷却手段は、基板の温度を周囲のレベルに近づけるためにのみ有効です。さらに、能動的な冷却で放散できる熱量には限界があります。これが、アクティブコンポーネントから熱を逃がすために追加の戦略が必要とされる場所です。 アルミニウムは、PCBのコアに使用できる代替材料の一つであり、一般に誤って「アルミニウムPCB」と呼ばれることがあります。PCBの金属コアとしてアルミニウムを使用することで、その高い熱伝導率のおかげで、アクティブコンポーネントから熱を容易に逃がすことができます。アルミニウムまたは他の金属をPCBのコアに使用することで、熱がボード全体により均一に分散されます。 これをFR4と比較すると、FR4はPCB基板用の 代替材料の中でも比較的熱伝導率が低い方です。PCB上のアクティブコンポーネントの近くにホットスポットが形成されることがあり、熱を逃がし、温度を安全なレベルに保つためにアクティブおよびパッシブの冷却手段が使用されます。アクティブコンポーネントから発生する熱は、熱ビアやランドを使用して、コンポーネント層から内部のグラウンドまたは電源プレーンに運ばれることもあります。 これを、PCB基板用の他の 代替材料と比較して、比較的熱伝導率が低いFR4と対比してください。 PCBのホットスポットはアクティブコンポーネントの近くに形成される可能性があるため、熱を放散して温度を安全なレベルに下げるために、アクティブおよびパッシブ冷却手段を使用します。 アクティブコンポーネントによって生成された熱は、熱ビアやランドを使用して、コンポーネント層から内部のグラウンドまたは電源プレーンに移動させることもできます。 アルミニウムPCBスタックアップ アルミニウムPCBを製造の観点から見ると奇妙な選択に思えるかもしれませんが、アルミニウムPCBで使用できるスタックアップは、FR4基板で使用できるスタックアップに似ています。以下の画像に示すスタックアップの例です: アルミニウムPCBの例示レイヤースタック アルミニウムPCBスタックアップは、以下の考慮事項で設計されるべきです: 表面層:これは標準の銅箔層です。一部のメーカーは、FR4で使用されるよりも重い銅(最大10オンス)の使用を推奨します。 誘電体層:内部の誘電体層は、プリプレグとして機能する任意の熱伝導性層です。これはポリマーや セラミック層であることができます。特に熱伝導率に対する電気伝導率の比率が高いセラミックを選択することで、熱管理を助けつつ十分な絶縁を提供します。誘電体層の典型的な厚さは0.05から0.2 mmです。 アルミニウム膜層:アルミニウム膜層は、望ましくないエッチングからアルミニウムコアを保護する保護的な役割を果たします。これは非常に薄い絶縁層であり、コアを通してドリルされた任意のビア(下記参照)にとって重要な役割を果たします。 記事を読む
Altium Designer 統合環境とは Altium Designer 統合環境とは 1 min Blog 回路図を描く時には回路図エディタを起動し、プリント基板をレイアウトする時にはPCBエディタを起動する。これはプリント基板CADを利用する場合のごく普通の手順です。しかしAltium Designerでは違います。 Altium Designerではプラットフォームを起動するだけでよく、回路図を書く場合でもPCBをレイアウトする場合でも個々にプログラムを起動する必要はありません。何故なら、Altium Designerが真の統合ツールだからです。 Altium Designerのユーザーの皆さんは、このような独自性を意識することなく利用されていると思いますが、実はこの統合環境は他には見られない極めてユニークなものなのです。 Altium Designer統合環境のしくみ Altium Designerのプログラムは他とは異なり、クライアントとサーバーの 2つのパートに明確に分離されています。 例えば回路図エディタを例にとると、ユーザーが画面を見ながらマウスやキーボードでツールとのやり取りを行う為のユーザーインターフェイスと、回路図の編集機能を提供するアプリケーションロジックの部分が分割され、それぞれ独立したプログラムとして実装されています。このユーザーインターフェイス部はクライアントモジュールとして実行ファイル(.exe)形式で用意され、アプリケーションロジック部はサーバーモジュールとしてダイナミックリンクライブラリ(.dll)で用意されています。このサーバーモジュールにはAPIが用意されており、クライアントはこのAPIを介してサーバーが持つ回路図編集機能にアクセスし、回路図エディタとしての機能を包括的に提供します。 このクライアント部とサーバー部との分離は、PCBエディタ等の他のアプリケーションでも同様に行われています。そしてさらに重要なのは、一つのクライアントが全てのサーバーの共通のユーザーインターフェイスとして使用されるという事です。 この構造をクライアント側から見ると、一つのクライアントに複数のサーバーが接続される形となり、接続された全てのサーバーをクライアントが単一のユーザーインターフェイスで束ねています。これはまさにツールの統合を意味します。そしてこのクライアントモジュールは統合プラットフォームとしてAltium Designer統合環境の根幹を成しています。 Altium Designerでは一つのクライアントに複数のサーバーがプラグインされる事によって統合環境が実現されます。クライアントモジュールは実行ファイル(exe)で提供され、サーバーモジュールはDLLで提供されます。DLLで提供される全てのアプリケーションはクライアントを起動するだけで利用できます。また異なるタスクに移行(例えば回路図編集からPCBレイアウト)する場合でも、オープンしたドキュメントの種類に合った画面が自動的に呼び出される為、恣意的なアプリケーションの切り替えは不要です。また、各サーバーのAPIは公開されており、ユーザーが独自に作成したアプリケーションからサーバーにアクセスする事ができます。この先進的な統合環境は、1995年にEDA/Clientという名で登場し、その後の改良に伴いDesign explorer、DXPプラットフォームと名を変え現在のX2プラットフォームに至ります。 サーバーの分類 記事を読む
対称ストリップラインインピーダンス計算機と公式 対称ストリップラインのインダクタンスまたはインピーダンス計算機と公式 1 min Blog 以前の記事 では、表面および埋め込みマイクロストリップトレースの インピーダンスを計算する際に、異なる計算機を使用すると生じる不整合について見てきました。前の記事で述べた多くの問題は、ストリップラインインピーダンス計算機にも当てはまります。対称ストリップラインは、非対称ストリップラインよりも、数値的にも解析的にも対処しやすいです。ここでは、対称ストリップラインのさまざまなインピーダンス公式と計算機の短い比較を行います。 IPC公式とワデルの方法 マイクロストリップインピーダンス計算機の場合と同様に、ストリップラインインピーダンス計算機は、IPC-2141公式またはワデルの方程式に依存する傾向があります。計算機がこれらの方程式を適切な近似の下で実装しているかどうかは常に慎重に確認するべきです。始めるために、この記事の方程式で使用される記号は、以下に示される幾何学に対応しています: 対称ストリップラインの幾何学 多くの計算機は、上記の図の幾何学的パラメータに対するさまざまな限界について、方程式を一連の近似に分割します。これらの方程式は、ワデルの方法を使用して見つけることができます。特定の(相互に排他的ではない)近似の下で、以下の方程式はストリップラインのインピーダンスを定義します: 狭いストリップのためのストリップラインインピーダンス方程式 広いストリップラインの場合、上記の方程式はフリンジ容量係数の観点から次の方程式に簡略化されます: 広いストリップのストリップラインインピーダンス方程式 上記の解は、IPC-2141規格で明確に定義されています。一般に、これらの方程式は実験結果と比較して約1%の誤差を生じますが、これはマイクロストリップ伝送線のIPC標準方程式よりもはるかに高い精度です。IPC-2141標準が正しい定義を使用している一例です。 良い計算機は、関連する限界を自動的に区別し、ユーザーの入力に基づいて正しい方程式を適用します。他の計算機は、ユーザーが狭いストリップラインまたは広いストリップラインを指していると仮定しますが、計算機の適用可能性を明示的には述べません。ストリップラインのインピーダンスを計算する際に、計算機が上記の二つの限界のいずれかを定義しているかどうかを必ず確認してください。 一部の計算機は直接互いを模倣しているため、同じタイプの誤りを含むことがあります。特定の近似の下でのみ有効なストリップラインインピーダンス計算機のために定義された他の方程式もあり、それらは実際には上記の方程式の簡略化です。著者の意見としては、これらの他の方程式は避けるべきだと考えられます。 限界 T = 0 での代替解は、第一種楕円積分の形で書くことができます。自分のストリップライン計算機を作成することに興味がある開発者は、この積分を評価するための標準的な数値アルゴリズムを簡単に実装できます。興味のある読者は、この方程式についての コーンのオリジナル論文を参照してください。 伝送線との関係 記事を読む