Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
大学・高専
学生ラボ
教育者センター
Altium Education カリキュラム
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
PCB設計
PCB設計
業界をリードする専門家によるPCB設計の最新情報をご覧ください。
Learn How Altium Supports PCB Designers
Overview
All Content
ウェビナー
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェア
Develop
Agile
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
PLM統合
Configurable Workflows
GovCloud
MCAD CoDesigner
Octopart
Requirements Portal
SiliconExpert
Z2Data
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
Americas
EMEA
ANZ
APAC
PCB設計におけるDRC: 設計の失敗の防止
1 min
Thought Leadership
私は長年にわたって小さなボートを所有しており、水上での趣味に使用していましたが、いくつかの重要なルールに従う必要がありました。ルールの1つは、ボートを水に浮かべる前に、排水プラグを必ず取り付けるということです。新しいボートをが沈んでしまい、回収するために泳ぐくらいなら、ただ泳ぐため水に入る方がはるかに安くつきます。 ルールは自分たちを保護するためのものだということは、誰でも知っています。しかし、不注意または意図的に、ルールが無視されることもあります。回路基板の設計にも、従うべきルールがあります。さいわい、今日のPCB設計ソフトウェアにはデザインルール チェック(DRC)が組み込まれています。設計者はこれらを使用するだけで十分です。 ルールは設計の失敗を防止するためのものです。 基板のDRC 回路基板の設計のサイズや複雑性にかかわらず、デザインルールのチェックは行う必要があります。特定の設計は非常に単純なため、DRCに時間を費やす価値はないと主張する人もいます。しかし、最も単純な設計でも、予期しない設計違反を見逃したたために、大きな問題を引き起こす可能性があります。DRCにより、設計を製造のため提出する前に、設計の整合性を確認できます。回路基板設計のDRCは、ツールごとに名前や説明が異なるため、基板設計ソフトウェアでレイアウトに対してチェックすべき、いくつかの一般的な要素を以下に示します。 基板のテクノロジーのルール : レイアウトツールでは、設計の各種物理パラメーターの有効性、たとえば物理レイヤーが正しく定義され、重複していないことをチェックできる必要があります。 フットプリント : レイアウトツールは、設計に使用されているフットプリントを個別に、またはバッチモードでチェックできる必要があります。 コンポーネント : レイアウトツールを使用して、コンポーネントが適切なフットプリント用に正しく設定されているかどうかをチェックできます。また、コンポーネントの間隔や位置が正しいことや、グリッド上またはグリッド外、および基板の予想される輪郭内に正しく配置されているかどうかもチェックする必要があります。 ネット : 基板上の電気的なオブジェクト(ピン、ビア、配線、フィル、プレーン)のクリアランスや、他の電気的な制約をチェックするよう、デザインルールを設定できます。 高速
記事を読む
高電圧PCB設計についての検討事項
1 min
Thought Leadership
私は以前、高電圧の応用は電力工学だけに必要なものだと考えていました。発電所や変電所で働く気はまったくなかったので、高電圧PCBの設計について学ぶことを免れていたわけです。ところが、空間の応用に興味を持った時点で、その考えが間違っていたことに気付きました。そして、怠惰な自分と向き合わざるを得なくなってしまったのです。高電圧の応用は、製造や発電所から医療や航空宇宙まで、ほぼすべての業界に存在しています。 高電圧の応用に向けたPCBの設計では、設計や製造の全工程でさまざまな内容を検討しなければなりません。基板は過酷な状況で稼働することが条件となっており、部品や材料の寿命に大きな影響を受けます。これに挑戦しようという意気込みがある場合は、レイアウトの作成を開始する前に、いくつかの検討事項を確認しておきましょう。 動作周波数についての検討事項 製品の動作周波数は、 ESD と同様に高電圧設計に影響を及ぼし、 ノイズ管理 は基板に影響を及ぼします。これは、高周波が低い電圧でアーク放電を成し、信号線の周辺でより 厳重なスペース が必要になるからです。 周波数帯のもう一端にある低電圧DCについても、特別な検討が必要になります。特定の環境条件では、DC差動がエッチングやエレクトロ ケミカルマイグレーションの原因になることがあります。これらはどちらも望ましいものではなく、エレクトロ ケミカルマイグレーションは高電圧設計の性能や寿命により大きな危険をもたらします。というのも、導体パッドやトレースに whisker と呼ばれる微細な導電性のフィラメントが「成長」し、最終的には電位間でショートが発生する可能性があるからです。ここでは少なくとも、アーク放電を成しやすいポイントが発生し、基板の効果的な 沿面距離と空間距離 が減少します。 エレクトロ ケミカルマイグレーションはスズや銀で最も多く発生するものの、ときには銅でもフィラメントが破壊されることがあります。危険を最小限にするためには、不純物を含まないスズや銀をPCBの仕上げに使用しないことです。スズを使用する場合は、 鉛の含有量が少ないものが推奨されます
記事を読む
不十分なデータ管理に起因する開発後の問題の評価
1 min
Blog
どのような設計者やチーム、企業にとっても、設計をリリースまで漕ぎつけたときは安堵のため息をつける瞬間でしょう。しかしながら、この瞬間が常に喜びに満ちたものになるとは限りません。プロジェクトの完了には、次の2種類があります。a)ドキュメント化プロセスに何の不備もなく無事設計を完了しており、リリースの準備を開始できるケース。b)設計は問題なく完了しているが、データ管理プロセスに小さな(または大きな)誤りがあるため、修正と製造の後戻りが必要であり、製品リリースを遅延せざるを得ないケース。データ管理プロセスに何らかの不備がある場合、開発後はすべての局面を通じて後悔し続けることになりかねません。 開発後の懸念と後戻りの可能性 開発後の局面で懸念が持ち上がるのは当然のことであり、特にデータ管理についての不確定要素がある場合はなおさらです。ECADデータ資産の管理が十分でないと、ドキュメント化の方法が時代遅れになる傾向にあります。その場合、データ管理システムでエラーが非常に発生しやすくなり、ECADプロセスの多数の要素を手動で構成し直す結果になるおそれがあります。 ECADデータの正しい保存方法 ECADデータの保存場所は、その保存方法と同じくらい重要です。いまだに数多くの企業が、Dropboxなどの一般向けネットワークドライブを利用してECAD資産を保存しています。これは一見便利に思えるかもしれませんが、体系化された信頼できるデータ管理システムが設計方針に組み込まれていない限り、以下のような問題が生じるおそれがあります。 アクセスの制限 不十分なデータコントロール 異種の複雑なデータ ライフサイクルの非対応 プロジェクトを重視して体系化されたデータ管理システムがない場合、特定のファイルにアクセスできないだけでなく、データの配置ミスや紛失につながる可能性があります。 迷いのない製品リリース 開発後の不確定要素を評価するときは、仮説のわなに陥り、自分を見失いやすいものです。しかし、使用するリソース、データ管理戦略の正しい実施方法、データの保存場所をきちんと理解していれば、不安を確信へと変えることができます。現在のプロセスに疑いを抱いたり、損失の大きいエラーのために設計データの修正を余儀なくされたりした場合、貴重な時間が無駄になります。設計から製造までのプロセスを進める中で、このような問題を回避するには、正確なデータを体系化して、はじめから正しい方法で管理することです。 無償の ホワイトペーパー を今すぐダウンロードしてください。このホワイトペーパーでは、Altium Vaultを利用して、時間と予算を重視した賢明なデータ管理システム運用について説明しています。
記事を読む
PCB回路設計で微細な短絡の発生を防止する方法
1 min
Thought Leadership
デートで出掛けたディナーのパスタに髪の毛が入っていたということほど、悲惨な話があるでしょうか。口に入れた後に気付いたとすればなおのことでしょう。この悲劇を避ける方法は2つあります。ひとつは、料理を口に運ぶ前に髪の毛が入っていないかどうかを徹底的に確かめること。もうひとつは、料理に髪の毛が入ってしまう危険を完全になくすこと(ただし、この場合は別のレストランを選ぶ必要があるかもしれません)。PCBの設計では、2~3本の髪の毛がそれほど大きな損害をもたらすことはありませんが、QCではどんなに微細な短絡も大問題になります。短絡を見つけるのには時間がかかるうえ、その修正コストはPCB実装よりも高額になることがあります。レストランの食事に髪の毛が入っていては困るように、設計でも短絡が発生するのを回避しなければなりません。とはいえ、人間はミスをするものです。短絡を完全には回避できないかもしれませんが、成功事例を実践して危険を最小限にすることは可能なはずです。 微細な短絡とは何か?どのように発生するのか? 短絡は、関連していない2つの信号間の想定外の接続によって発生します。たとえば、正の電圧がGND信号と接続した場合には短絡と見なされます。信号が太い銅箔で接続されていれば、短絡は肉眼でも確認できます。これは、PCBが機械を使わずに手作業で作成されている場合にあてはまります。 微細な短絡が懸念事項となるのは、PCBが機械で製造される場合です。これは、髪の毛のように細い銅箔が2つの信号を接続してしまうことがあるからです。こうした短絡は、実装されたPCBで一連のQCテストが実施されるまで、肉眼では特定できません。残念ながら、製造工程のこうした遅い段階で短絡が見つかると、それまでに費やした時間や原材料のコストは確実に無駄になります。 短絡がどのように発生するのかを理解するためには、 PCB製造の一般的なプロセス を把握しておく必要があります。通常、PCBは非導電性の基板にラミネート加工された銅箔を使って製造されます。電気回路をPCBに実装するための一般的な方法は写真製版法で、電気回路の画像を含むシルクスクリーンのラミネートが、フォトレジスト コーティングされたPCB上に配置されます。 次に、PCBに紫外線(UV)が照射され、シルクスクリーンで覆われていない領域がアンモニアベースの溶液でエッチング除去されます。大半の場合、これらの処理は自動で行われ、問題がある場合は信号のパッドやトラックに接続する細い銅箔が残ることになります。製造後に徹底したテストを実施しない場合は、製造のその後の段階で不要な問題が発生する危険があります。 大半の場合、 微細な短絡を早い段階で特定することはほぼ不可能 微細な短絡は適切な電気テストによって削減可能 PCB設計を独学で勉強した私にとって、製造後の電気テストを実施しなかったために大変な痛手を負ったことは最大の教訓の1つです。「製造後に必要な電気チェックは PCBの製造業者 がすべて請け負ってくれる」と考えるのは安全ではありません。PCBを実装工程に送る前に、必ず フライングプローブテスト などの電気テストを実施して合格するようにしてください。フライングプローブテストでは、高精度のプローブが高速で移動しながらコンポーネントのパッドやビアをチェックし、製造での欠陥や設計のミスが特定されます。 なお、電気テストは100%確実なものではなく、微細な短絡を特定できない場合もあります。とはいえ、欠陥のあるPCBを実装工程に送ってしまう危険は大幅に低減できます。また、電気テストを通過したPCBに欠陥が見つかった場合に製造業者が確実に補償してくれれば、危険をさらに減らすことができます。上記の場合、評判のよい製造業者であれば、欠陥のあるPCBを交換し、実装されたコンポーネントの費用を弁償してくれます。 PCBは実装工程に送る前に必ずテストすること 微細な短絡の発生を削減するために設計者が実践できること
記事を読む
高電圧PCB設計: 沿面距離と空間距離
1 min
Blog
PCB設計者
電気技術者
高電圧の応用には、通常のPCBよりも厳しい設計パラメータが必要になる 大学生のとき、私は電気化学エッチングの実験を行いました。その経験をずっと履歴書に記載していたのは、高電圧源や危険な化学品を使った実験について、面接官が必ず話を聞きたがったからです。ところが、危険な職場環境をまったく意に介さない人間が求められる仕事には就きたくないと後になって気付きました。 それがきっかけで、私は高電圧設計について学び始めました。高電圧の製品に要求される基準には圧倒されましたが、それと同時に安心もしました。私たちが作成した高電圧製品を大学院生たちが使うのを止めることはできないものの、基板がきちんと保護されているのが分かれば心配する必要はありません。 安全の確保にあたって、特定のスペースルールが必要になる場合とは 高電圧PCB設計に必要となる厳しいスペースルールは、すべてのPCB設計に適用されるわけではありません。一般的には、製品の通常の作動電圧が30VACまたは60VDC以上になると、基板設計に スペースルールを適用すべきでしょう。特に、高電圧で密集した設計の場合は慎重になる必要があります。密集したデザインではスペースが極めて困難になり、保護の観点からさらに重要になるからです。 高電圧設計ではスペースがさらに重要になります。基板全体の電圧によって、PCBの導電性要素間でアーク放電が発生しやすくなるからです。発生したアーク放電は、製品にもユーザーにも極めて大きな危険をもたらします。こうした危険を軽減するために、空間距離と沿面距離という主に2つのスペース測定の基準があります。 空間距離とは 空間距離とは、2つの導体間の空間の最短距離を指します。私はこの定義をあき高(つまり、自分の頭が何かにぶつかる前に、どのくらいの空間があるか)として覚えています。 PCBの空間距離が短すぎると、基板上で隣接する導電性要素間で過電圧によるアーク放電が発生する可能性があります。 クリアランスルールは、PCB材料、電圧、環境条件によって異なってきます。環境による影響はかなり大きくなります。最も一般的には、湿度によって空間の破壊電圧が変化し、アーク放電が発生する可能性に影響が及びます。ここでは、粉塵についても考慮しなければなりません。PCBの表面に集まった微粒子は時間とともにトラックを形成し、導体間の距離を縮めてしまいます。 アーク放電は製品に損傷をもたらし、ユーザーに被害を及ぼします。 基板でのスペースが重要な設計パラメータになるのはこれが理由です。 PCBでの沿面距離とは 空間距離と同様に、 沿面距離もPCB上の導体間の距離を指しますが、こちらは空間の距離ではなく、絶縁材の表面に沿った最短距離になります。沿面距離の要件は環境や基板の材料によっても異なり、空間距離と同じく、基板上に蓄積した水分や微粒子によって沿面距離が短くなる場合があります。 密集した設計では、沿面距離の要件を満たすことが困難になり得ます。トラックを移動させることが第一の選択になることは稀であり、表面の距離を延ばすには他にいくつかの方法があります。それは、トラック間にスロットを追加するか、または絶縁物に垂直の障壁を実装することです。いずれの方法でもトレースのレイアウトを変更することなく、沿面距離を大幅に延ばすことができます。 材料の比較トラッキング指数(CTI) 空間距離と沿面距離の要件のうちで作動電圧の次に重要な要素は、PCB材料の特性に関するものです。材料の電気絶縁性は、比較トラッキング指数(CTI)で示されます。CTIは電圧で表示され、材料の表面がいつ破壊するかを測定する標準テストによって決定されます。 破壊値に基づいて、材料は「0」から「5」までの6つのレベルに分類されます。製品に対する絶縁物の規定レベルは、このCTIの分類に基づきます。最も低いレベルは「5」で、電圧は100V未満となります。破壊値が600V以上のレベル「0」に分類される材料が最も頑丈で、多くの場合にコストも高額になります。
記事を読む
設計の複雑化と小型化の影響
1 min
Blog
その登場以来、電子機器は、小型化、高速化、効率化されてきました。しかし、小さくなった基板に、配置するコンポーネント、ピン、接続を増やそうとすると、いくつかの問題が発生します。これらの課題には、熱、BGAブレークアウト、サイズ自体が含まれます。あの小さく奇妙な形をした筐体に、基板をどのように収めるか、ということです。 簡単な統計をいくつか挙げます: 過去10年間で平方インチ当たりのピン数が3倍になった一方で、基板面積は比較的一定に維持されました。 15年間で、部品1個当たりの平均ピン数が4 ~ 5分の1に減った一方で、平均部品点数が4倍になりました。 設計のピン数は3倍になり、ピン間の接続数は倍増しました。 これらの増加のペースが近いうちに落ちるとは考えにくく、設計時にこれらの問題に対処する方法を理解することが重要です。ここでは、これらの問題の一部である、多ピンのBGA PCBやHDI PCBの配線に注目しましょう。 BGAブレークアウト 多くの場合、手動でのBGAのプランニングと配線には、数日を要することがあります。また、プランが非効率的であると、必要以上に多くのレイヤーを追加している場合があり、コストが増えますが、ご存知のように、予算は少しも増えません。今日、多くのBGAで、ビアキャプチャパッドを対角線上に配置しています。いわゆるドッグボーンファンアウトで、それをご覧になったことがあるでしょう。 ドッグボーンスタイルのファンアウト しかし、ドッグボーンファンアウトが選択できるとは限らない場合を目にする機会がますます増えています。これは、ピンのピッチサイズが小さく、それらのビアを追加する十分なスペースがないためです。これらのBGAの場合、ブレークアウトにはビアインパッド方法が必要です。これは、ビアがパッドに直接接続され、新しいレイヤー上で信号を配線できる場合です。 HDIで密度を高める 設計が小型化を続ける際に注意すべきもう1つの点は、レイヤーを追加せずに、多くなったコンポーネント、トレース、そしてより複雑化した全体を、小さくなったPCBに詰め込む方法です。この問題を解決するには、高密度相互接続(HDI)PCBを使用します。 HDI PCB、提供: flygold circuit
記事を読む
設計ドキュメントの主要なPCB設計要素の捕捉
1 min
Blog
ハードウェア製造業スタートアップ企業 / エレクトロニクスプロトタイパー
設計ドキュメント作成のうち最も重要でありながら、多くの場合に回避される要素の1つは、正式な設計ドキュメントです。設計を完了し、製造、実装、検証ドキュメントを生成しただけで、業務が完了したとみなしてしまうことは珍しくありません。システム仕様、設計の意図、設計プロセス、仕様の追跡可能性を正しく捕捉することは、時間を要し、骨の折れる作業ですが、極めて重要です。設計ドキュメントでは、システムの設計のあらゆる側面を捕捉し、関連するすべての設計情報へ簡単にアクセスできる必要があります。しかし、製造や実装の図面に含まれない設計の詳細をどのように捕捉すればいいのでしょうか? 設計の全ての側面を設計ドキュメントに表現する あらゆる設計において、設計ドキュメントの作成は計画段階で開始し、仕様から始める必要があります。設計ドキュメントの対象である設計が、より大きなシステムのサブシステムである場合、システム全体の仕様を提示してから、システム全体からそのサブシステムまで、システムがどのように分割されるかの仕様を記載する必要があります。設計プロセス全体を通して、設計ドキュメントは生きたドキュメントとなり、設計プロセスにおいて、それぞれの部分の回路が設計され、実装されていきます。 設計の仕様段階は、時間や予算の制約のために多くの場合見逃されたり、回避されたりする部分です。そこで、仕様を正しく開発するため、前もって時間とリソースを割り当てておくことが必要です。起動環境での作業に従事したことがあるなら、おそらくは仕様が不明瞭、またはまったく存在しない設計プロジェクトに直面したことがあり、この手法が危険であることを理解しているでしょう。仕様が存在しない、または固定されていない場合、その仕様に合わせて設計を行おうとすると、終わりのない開発のやり直しにはまり込むことになります。仕様の目的は、何を達成すべきかを明確にし、設計が完成したことを検証できるようにすることです。「もっと良いものを作れるはずだ」という考えから、プロジェクトが予算を超過し、スケジュールが遅延することは珍しくありません。このような結果が起きるのは、最初の時点で仕様を明確に決定しておかないことが主な原因です。 設計ドキュメントにおいて対象としているデバイスの仕様は、より大きなシステムのサブシステムであることも珍しくありません。システム全体の仕様が提示され、その後で設計対象のデバイスに適用される部分のシステムの仕様が、論理的で整った形式で示されます。 仕様には次の内容を含める必要があります(これで全部とは限りません)。 機能(サブシステムがどのような動作を目的としているか) 動作環境(温度、湿度など) 他のサブシステムとのインターフェイス パワーバジェット 利用可能な電源電圧 機械的な制約: サイズ、重量、形状 衝撃や振動に関する要件 熱(利用できる冷却、放射熱の放出制約など) EMIの放射、伝導、および感受性 信頼性 仕様ステージ以後にも、設計フェーズが完了したことを判定するため、関連する設計情報を捕捉する必要のある他の分野が存在します。正式な設計ドキュメントの作成には時間を要しますが、回路図、製造図、実装図の範囲を超えて、設計の全ての側面を捕捉するためには不可欠なことです。 正式な設計ドキュメントに、その他に何を含めるべきかについては、無料のホワイトペーパー 「設計ドキュメントによる設計の捕捉」
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
146
現在のページ
147
ページ
148
ページ
149
ページ
150
ページ
151
Next page
››
Last page
Last »