Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Easy, Powerful, Modern
The world’s most trusted PCB design system.
Learn More
PCB設計
パート 2: マスター図面用の PCB 仕様書です
マスター図面は、PCBドキュメントの中で最も重要な部分です。ボードが製造可能であることを確実にするために、マスター図面を専門的に完成させる方法を見てみましょう。
記事を読む
パート1: 製造文書の設定
プリント基板の製造と組み立てのためのドキュメントに関して知るべき全てを学びましょう。
記事を読む
セラミックコンデンサの誘電体とその他のタイプへのガイド
コンデンサの電気的挙動は、部分的にはコンデンサの誘電体によって決定されます。この記事でコンデンサの誘電体についてすべて学びましょう。
記事を読む
PDNシミュレーションにおけるフェライトビーズモデルと伝達インピーダンス
この記事では、PDNのフェライトと伝達インピーダンスについて調査します。PDN内のフェライトがスイッチング回路にどのような問題を引き起こすかを説明します。
記事を読む
Altium Liveに関する質問です: デジタル信号はコプラナ導波路にありますか?
GPCW構造がデジタル信号に与える影響を考えたことはありますか?ヒントは、Sパラメータを見てみましょう!
記事を読む
Altium Designerのベストプラクティス(パート2) - AltiumLive 2022
このセッションでは、ネットクラスやルールを使って設計意図を伝えるために回路図を使用する際のベストプラクティスをご紹介します。また、部品、ルール、ネットに優先順位とクラスを使用して、複雑な設計ルールを構築する方法も学習していきます。 ハイライト: 設計プロセスにおけるActiveBOM文書の活用 設計要件を理解 トランスクリプト: デビッド・ハバウド: 始めましょう。皆さん、ようこそ。デビッド・ハバウドです。Altiumでプロダクト・マーケティング・エンジニアをしています。本日は、Altium Designerのベストプラクティスをご紹介します。このプレゼンテーションは、「ベストプラクティス」に関する講演の第2部です。ですから、新規ユーザーの方や、ルール作成や情報提供の基礎から学びたい方は、先に「ベストプラクティス パート1」をまずご覧になることをお勧めします。 そこで今日はまず、PCBについて話す前に、回路図側からルールを定義することである「回路図ディレクティブ」について説明します
ビデオを見る
貴社の部品表ではどの程度の弾力性がありますか? - AltiumLive 2022
ハイライト: アレックス・サップの紹介と経歴。 Nexarとは? 利用可能なサプライチェーン情報をもとに部品表の弾力性を確保する方法をご覧ください 調達能力の概要 APIフィードを活用する重要性 追加のリソース: Altium Nexarの詳細を見る ローレンス・ロマインが語る Altium Nexarのエコシステム トランスクリプト: アレックス・サップ: おはようございます。アレックス・サップと申します。本日は、AltiumLiveで「貴社の部品表にどの程度の弾力性があるか」という点についてお話しします。私は電子機器の分野でキャリアを積んできましたが、OEMメーカーから、困難な状況下にある場合に部品を変えられないかと打診されることがよくあります。特にここ2、3年、こういった要求は急激に増えていますね。だからこそ、エンジニアリングやサプライチェーンマネジメントが設計や企画をする際に経験することに共感を覚えています。 アレックス・サップ: では
ビデオを見る
PCBおよび電子アセンブリの故障解析の物理学
高信頼性設計が「故障の物理学」として知られる技術でアプローチされる理由を見てみましょう。
記事を読む
PCB用の5日間のチップ供給があったら、あなたは何をしますか?
需要の圧力と半導体の長期的な不足により、米国の企業は5日分のチップ供給に減少しています。
記事を読む
モード変換のガイド、その原因と解決策
差動ペアは、受信機での適切な終端と共通モードノイズの抑制を目的として、そのインピーダンスと長さのマッチング許容度について最もよく議論されます。ボード間接続やカスケード伝送線配置などの相互接続では、時々見落とされがちな重要なEMCコンプライアンス指標があります。これはモード変換であり、差動および共通モード信号伝送のSパラメータ測定で視覚化できます。 「モード変換」という用語は、特に波が二つの媒体間の界面を横切って伝播する際に屈折する光学の文脈で最もよく議論されます。ここでは、波が真の非偏光(TEM)波から部分的または完全に偏光した波に変わることがあります。電子設計、特に高速相互接続設計では、信号が受信機で読み取り、解釈できるように、モード変換はある値以下に制限されなければなりません。この記事では、高速設計におけるモード変換の短い概要と、一般的な差動標準からのいくつかの例を見ていきます。 モード変換の概要 用語「モード変換」とは、差動信号を共通モード信号に変換することを指します
記事を読む
差動ペアのインピーダンス:PCB設計のための演算器の使用
私は高校でさまざまなコンピューターの授業を受け、なぜイーサネットケーブルの導体が互いにねじれているのか常に疑問に思っていました。これが、信号が互いに干渉することなく目的地に到達することを保証する単純な設計方法であることを、私はほとんど知りませんでした。往々にして、複雑な問題に対する最善の解決策は、実のところ最も単純なものです。 導体の差動配線は、イーサネットケーブルに限らず、PCBにおける主要なトポロジーの1つです。回路基板の設計者は、多くの場合、差動トレースではなくシングルエンドトレースの観点から伝送線路のインピーダンスを論じます。 一部の設計者は、差動ペアの各配線を固有のシングルエンドトレースとして扱う傾向があります。これにより、各配線間に存在する自然な結合が無視され、差動ペアのインピーダンスとシングルエンドのインピーダンスは大きく異なることになります。 伝送線路は本当にあるのか? トレースが伝送線路として動作するかどうかは、特定のトレースでの伝送遅延に依存します
記事を読む
SPICEにおけるPDNインピーダンスのシミュレーションと解析
パワーインテグリティ解析で寄生と誘導効果を適切にモデル化する方法を知っていれば、SPICEでPDNシミュレーションを実行できます。
記事を読む
基板のDFMプロセスを切り抜ける
アルティウムのPCB設計ブログ読者の皆さまは、おそらく、これまでに基板の設計や製造の経験をお持ちでしょう。私もそうですが、デザインを製造にリリースするのは、うれしくも悲しくもあることです。丹精込めて設計したハードウェアがもうすぐ形になる一方で、製造現場からDFMのリクエストが並んだ一覧が送られてくるからです。これは、1つも楽しいことではありません。この記事では、実装すべき設計機能を紹介し、製造前にやっておくべき手順について説明します。それがあれば、 DFMの厄介事を避ける上で役に立つでしょう。また、シグナルインテグリティ回路で起こる一般的なDFMの問題についても、いくつか例をご覧いただきます。 しっかりとした構成で始める 積層板が特定の厚さでしか提供されていないことを忘れてしまい、積層板の物理的な特性のみを考慮して材料を選択する技術者が大勢います。スタックアップは、任意ではなく限定的な厚さの選択肢から選んで設計する必要があるのです。そうしないと
記事を読む
PCB/PCBA 信頼性試験と故障分析の概要
PCBの信頼性テストと故障分析は密接に関連しています。ここでは、知っておくべきことと、どのように始めるかを説明します。
記事を読む
新人設計者のためのPCB設計の基本
新人設計者が新しいプロジェクトを始める際には、このガイドを役立ててください。
記事を読む
高電圧PCBの設計とレイアウトのための材料選択
高電圧PCB設計には、高電圧に耐えられ、過電圧や高温環境での使用も可能である、特別に設計された基板材が必要です。
記事を読む
基板設計出力と製造ファイルの概要
製作業者と実装業者が確実にPCBAを構築できるように、どの基板設計の出力ファイルが必要なのかを確認してください。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
18
現在のページ
19
ページ
20
ページ
21
ページ
22
ページ
23
Next page
››
Last page
Last »
他のコンテンツを表示する