Easy, Powerful, Modern

The world’s most trusted PCB design system.

Filter
0 Selected Content Type 0 Selected 全て Software 0 Selected 全て Clear ×
Clear
0 Selected Content Type
0 Selected Software
熱プロトタイピングPCB シミュレーションの代わりに熱プロトタイピングを使用すべき理由 設計における潜在的な問題の中で、熱的な課題は予測が最も難しいものの一つです。また、熱管理の問題に気づくのは、既にプロトタイプを作成し、テストを開始した後のことが多いです。その時点で、機械設計チームはエンクロージャーの変更、冷却機構の追加、製品の多くの仕様の変更を行う必要があります。熱問題が発生した後で仕様を変更するには遅すぎます。 これらの問題に対する解決策は何でしょうか?ほとんどのEDAベンダーは熱シミュレーションアプリケーションを推奨し、その後で追加のライセンスを販売しようとします。熱シミュレーションアプリケーションが悪いと言っているわけではありませんが、PCB設計を行う前に、低リスクで行える少量の作業があります。ここで熱プロトタイプを作成し、理想化された製品に対して熱シミュレーションを実行する前にこれを行うべきです。 熱プロトタイプPCBとは何ですか? 熱プロトタイプは、完全な電気および機械設計を仕上げる前に、PCBの熱管理問題を特定するために使用できるシンプルなテストPCBです。一部のコンポーネントと回路は、回路の想定される電力レベルで動作するシンプルなプロトタイプボードを構築することによって検討され、その熱要求は測定から決定することができます。シミュレーションデータに頼るのではなく、PCBからの実際のデータを得ることで、実際の洞察を得ることができます。 熱プロトタイピングのもう一つのアプローチはシミュレーションにありますが、これが常に最善の道であるわけではありません。しかし、熱シミュレーションには具体的に何が問題なのでしょうか? 実際のところ、シミュレーションを使用すること自体に問題はありません。問題は、これらのアプリケーションが複雑で高価であることです。一部の熱シミュレーションアプリケーションは、PhDレベルの知識とスキルを必要とし、比較的正確な結果を保証するために設定します。また、シミュレーションモデルに多くの入力が必要であり、これらはしばしば大まかな推定に基づいて決定されます。そして、シミュレーションソフトウェアのコストがあります:使いやすいソフトウェアは通常、最も高価な価格タグが付いています。 明らかに、これらすべてが熱シミュレーションアプリケーションをほとんどの設計者にとって手の届かないものにしています。代わりに、電力要求と熱処理の限界まで押し上げることができる小さなテストボードを構築することを検討してください。たとえば、熱プロトタイプを使用して次のことができます: 電力エレクトロニクス回路で直接 温度測定を取得する テスト回路で様々なコンポーネントを試す テスト回路でスタックアップオプションを試してみる 開発ボードや評価キットと熱プロトタイプを統合する 熱プロトタイプに使用すべき回路の種類は?熱プロトタイピングに値するいくつかの良い例の回路があります: 特に ゲートドライブ を含むスイッチング電源回路、パワーMOSFETを搭載した回路、特にMOSFETアレイ 特定のプロセッサやASIC 温度に敏感なコンポーネント、例えば高精度アナログインターフェース、リファレンスなど 一部のRFコンポーネント、特に高周波数パワーアンプ これらのコンポーネントは、顕著な熱を発生させる可能性があり、積極的な冷却戦略が必要になる場合があります。設計の意図がエンクロージャを通じて、または別の受動的戦略で熱を管理することである場合、これらのデバイスは冷却アプローチを完全に理解するためにエンクロージャと一緒にテストする必要があります。熱プロトタイプは、その両方を行う機会を提供し、いくつかの利点をもたらします。
将来のエレクトロニクス設計がチップレットベースであるかもしれない理由 将来の電子設計がチップレットベースであるかもしれない理由 半導体業界の絶えず進化する風景の中で、従来の一枚岩のチップアーキテクチャからよりモジュラーなチップレットベースの設計への移行が起こっています。この移行は、製造技術の変化だけではありません。これは、現代の世界を動かす電子部品を概念化し、設計し、提供する方法において、電子業界の重要な進化を代表しています。チップレットベースのアーキテクチャは、イノベーションの推進力として台頭しており、ムーアの法則の時代を超えて、コンピューティング性能の指数関数的な成長を続けるための有望な道を提供しています。 チップレットの理解 その核心において、 チップレットは小さな、独立して製造された半導体コンポーネントであり、単一のパッケージ内で組み合わされることで、従来の単一チップとして機能するように協調して動作します。この分散化により、一枚岩の設計では達成できなかった柔軟性とカスタマイズのレベルが可能になります。これらのチップレットをビルディングブロックとして扱うことで、設計者は特定の性能基準を満たすために高度にカスタマイズされたシステムを作成できます。 技術的な利点:チップレットの最も魅力的な利点の一つは、特に半導体業界がシリコンベースの技術の物理的限界に近づくにつれて、従来のチップ製造が直面するいくつかの制限を回避できることです。チップレットは前進の道を提供し、トランジスタのスケーリングだけでなく他の手段を通じて性能向上の継続を可能にします。 チップレットは、システムをよりスケーラブルで柔軟にし、全体のチップの完全な再設計を必要とせずに急速な技術進歩に対応できるようにします。さらに、チップレットベースのシステムの性能は、各チップレットがその機能に最適なプロセスを使用して製造されるため、大幅に高くなる可能性があります。これは、一枚岩のチップのすべての部分に適合する妥協ではなく、各部分に最適なものです。 コスト効率:半導体製造において、経済的要因は技術的なものと同じくらい重要です。特に技術の最先端での一枚岩のチップの開発は、高コストと歩留まり損失に関連する大きなリスクに直面しています。より先進的なプロセスで製造された大きな一枚岩のシリコンチップは、与えられた欠陥数に対して低い歩留まりの可能性がありますが、チップレットアプローチは欠陥をより多くのチップレットに分散させ、ウェハーあたりの歩留まりを増加させます。 チップレット採用の背後にある推進力 ムーアの法則とその限界:半導体業界は長い間、ムーアの法則に導かれてきました。これは、チップ上のトランジスタの数が約2年ごとに倍増し、定期的な性能向上につながるという観察です。しかし、技術的および経済的障壁のためにこのスケーリングのペースが遅くなるにつれて、業界は成長のための代替の道を見つけることを強いられています。チップレット技術は、ムーアの法則の永続性に依存するのではなく、アーキテクチャの革新を通じて性能向上を続けるための魅力的な解決策として現れます。 複雑さと専門化:人工知能(AI)やビッグデータ分析、高性能コンピューティング、そしてIoT(モノのインターネット)に至るまで、すべてのセクターでより複雑で専門化された処理能力の需要が高まっています。チップレットアーキテクチャは、特定のタスクに最適化された専門の処理ユニットの組み合わせを可能にすることで、このニーズに対応し、より強力でエネルギー効率の高いシステムを実現します。 サプライチェーンと製造の柔軟性:グローバルな半導体サプライチェーンは、 地政学的な緊張、貿易紛争、そしてパンデミックのような予期せぬ出来事からの混乱に対してますます脆弱になっています。チップレットアーキテクチャは、より柔軟で回復力のある製造戦略を可能にすることで、これらのリスクのいくつかを軽減することができます。チップレットは異なるサプライヤーや場所から生産・調達することができるため、製造業者は局所的な混乱の影響を軽減し、重要なコンポーネントのより安定した供給を確保することができます。 チップレットアーキテクチャと統合の課題 設計と統合:チップレットの約束は、重大な設計と統合の課題を伴います。異なるコンポーネントから一貫したシステムを作り出すには、高度な相互接続技術と方法論が必要です。これらの相互接続は、チップレットが効果的に通信できるように、高帯域幅と低遅延をサポートしなければならず、できるだけ密接に一枚のチップの性能に匹敵する必要があります。 テストと信頼性:チップレットベースのシステムの信頼性と性能を確保することは、テストプロセスに複雑さの層を追加します。各チップレットとその相互接続は、最終的な組み立てられたチップレットパッケージがすべての条件下で意図したとおりに機能することを保証するために、品質と信頼性の基準を満たすように厳格にテストされなければなりません。 エコシステムと標準の開発:チップレット技術の広範な採用は、設計、通信、統合のための普遍的な標準を含む強固なエコシステムの開発を必要とします。これらの標準を確立することは、異なるメーカーのチップレット間の一貫した相互運用性を保証するために重要であり、イノベーションを促進し、規模の経済を通じてコストを削減します。 実世界のチップレット例 ここでは、今日実現されているチップレット技術の可能性のいくつかの高プロファイルな例を紹介します。 AMD RyzenおよびEPYCプロセッサ:AMDがRyzenプロセッサおよびEPYCプロセッサラインでチップレットを使用するアプローチは、チップレットベースのアーキテクチャで達成可能な顕著な性能と効率の向上を示しています。AMDのチップレットアーキテクチャは、Zen
柔軟な回路で組み立てコストを削減する 柔軟な回路で組み立てコストを削減する 電子製造の絶えず進化する世界では、効率性とコスト効果の追求は常に存在します。技術の進歩ごとに、組み立てプロセスを最適化し、コストを削減する機会が生まれます。これの興味深い例は、従来のワイヤーとケーブルシステムに代わってフレキシブル回路を採用することです。直感的には、フレキシブル回路技術のような特殊技術に移行すると、ワイヤーハーネスコンポーネントの価格を比較した場合に限定して見ると、特にコストが増加すると考えられがちです。このブログでは、フレキシブル回路を取り入れることで、全体的な組み立てコストを削減するだけでなく、追加の利点をもたらすいくつかの方法を見ていきます。 フレキシブル回路の理解 最も基本的な定義では、フレキシブル回路は、導体が薄い誘電体フィルムの層に挟まれ、曲げたり折りたたんだり柔軟に動かしても導体が損傷しない配列です。フレキシブル回路は、シングルサイド、ダブルサイド、マルチレイヤーがあり、それぞれが特定のアプリケーションに合わせて調整されています。 約束通り、組み立て時間の短縮とコストの削減について深く掘り下げます。フレキシブル回路のコスト削減の可能性を真に評価するために、それらが全体的なコスト削減にどのように貢献するか、さまざまな方法を見てみましょう: 材料コスト 原材料コスト:フレキシブル回路は、コンパクトなフットプリントと合理化された設計のおかげで、従来の配線と比較して必要な材料が少なくなります。 追加コンポーネントの必要性の削減:コネクターや絶縁体などの機能をフレキシブル基板に直接統合することで、フレキシブル回路は別々の部品の要件を排除し、材料費を削減します。 上記の両方のポイントが、購買発注の作成、入荷検査、キッティングなどの間接的なコスト削減にもつながることを指摘することも重要です。 労働コスト 合理化された組み立てプロセス:フレキシブル回路は組み立て方法論に変化をもたらし、取り扱いおよび接続が必要な個々のコンポーネントの数を大幅に削減し、それによって大幅な時間と労働の節約につながります。 迅速なインストール:プラグアンドプレイコネクターの使用により、フレキシブル回路は迅速かつ手間のかからないインストールを促進し、個々のワイヤーをはんだ付けする労働集約的な作業を排除し、さらに労働コストを削減します。 再作業と欠陥の減少:フレキシブル回路による組み立てプロセスの合理化は、生産中のエラーや欠陥を減らし、再作業コストを下げ、収率を高めます。 デザインの反復とプロトタイピング 迅速なプロトタイピング:フレキシブル回路は、迅速なプロトタイピングと反復設計プロセスに適しており、メーカーがより迅速にデザインを反復し、洗練させることができ、最終的に市場投入までの時間を短縮し、関連する開発コストを軽減します。 配送コストの削減:ワイヤーおよびケーブルハーネスと比較した場合のフレキシブル回路の軽量性は、配送および輸送コストに直接的な影響を与えます。 メンテナンスと修理 耐久性の向上:フレキシブル回路の頑丈な構造は、摩耗に対する耐性が高く、製品ライフサイクルを通じてメンテナンス介入が少なくなり、修理コストが削減されます。 追加の利点:コスト削減の力に加えて、フレキシブル回路は、フレキシブル回路の需要の継続的な成長を説明するのに役立つ多くの追加の利点を提供します。この成長は、リジッドプリント回路基板の需要の成長率をはるかに上回っています。 重量およびスペースの節約:フレックス回路は軽量構造とコンパクトな形状を持っているため、重量およびスペース要件を最大60%まで削減でき、サイズと重量の制約が最も重要なアプリケーションにとって理想的な選択肢となります。 柔軟性:名前が示すように、フレキシブルな材料は、緊密な曲げや折りたたみが必要な製品や、何百万回ものフレックスが必要なアプリケーションに対して信頼性の高い使用を可能にします。
Altium Need Help?