Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Easy, Powerful, Modern
The world’s most trusted PCB design system.
Learn More
PCB設計
差動信号が重要である理由
はじめに 差動信号は、ロジック部品および製品を接続するための主要な手段となり、PCIなどの並列バスアーキテクチャーの多くを置き換えました。差動信号がデジタル世界を支配している主な理由として、並列シングルエンド信号プロトコルよりはるかに高いデータ帯域幅を1対の配線で実現できることが挙げられます。ご存知の通り、インターネットは差動信号なくして成立しません。 差動信号の例を以下に示します。 • USB • PCI Express • HDMI • Infiniband • SATA • 有線イーサネット • Hypertransport
®
• LVDS • ECL長距離ラインドライバー • 2相クロッキング • DDRクロックおよびデータ線 差動信号は、ほぼ全ての新規設計で選択されるプロトコルになったため、その動作原理、重要な設計上の考慮事項、重要でない事項を理解することが重要です。残念ながら、このプロトコルの動作原理、世間に広まっているどのルールが有効であり
記事を読む
インピーダンス計算とPCBスタックアップ設計
スタックアップ設計には、制御されたインピーダンス、クロストークコントロール、プレーン間キャパシタンスの必要性の3つが求められます。製造者によってはスタックアップで正しいインピーダンスを得ることができるかもしれませんが、残りの2つを解決するのは到底無理です。この責務は、何が必要で、どうやって必要とされるコントロールを実行に移すのかということを唯一知っている設計エンジニアに委ねられています。 この情報は、PCBスタックアップを設計するためのプロセスに関するガイダンスを提供することを目的としています。PCBスタックアップに対する要求がどのように変化していったかを理解するには、時間の経過に伴う技術の進化に注目することが役立ちます。 プリント基板の製造が始まって間もない頃は論理回路が非常に遅かったため、論理回路またはディスクリート部品の間をどのように接続し、どのようにDC電源のパスを各部品に供給するかだけが唯一の関心事でした。設計者に要求されていたのは、全てのワイヤに十分な信号層を供給し
記事を読む
クロストークと結合
クロストークや結合という言葉は、ある伝送線路から近くの伝送線路への電磁エネルギーの注入を表すために使用されます。基板でのクロストークは通常、同じレイヤー上に並んだ2つのトレース間、または隣接するレイヤーで重なり合った2つのトレース間で発生します。この結合エネルギーが被誘導トレースのノイズとなり、振幅が大きすぎると誤動作につながるおそれがあります。このノイズがどのようにトレース間を伝わるのか、またこれを防止する方法について説明します。 これらの概念のより応用されたアプリケーションについては、以下リンクのビデオを見て、AltiumDesigner
®
で単一および差動伝送線路のインピーダンスを計算する方法を学んでください。 クロストークと結合 クロストークや結合という言葉は、ある伝送線路から近くの伝送線路への電磁エネルギーの注入を表すために使用されます。基板でのクロストークは通常、同じレイヤー上に並んだ2つのトレース間、または隣接するレイヤーで重なり合った2つのトレース間で発生します
記事を読む
高速設計での伝送線路と終端
伝送線路は、電磁界の形でエネルギーを供給するために使う1対の導線です。大抵の人は、照明と電化製品を作動させるのに必要な電力を供給するために家庭に引かれている電線にはなじみがあります。プリント基板設計の文脈では、伝送線路とは、1つのプレーンの上または2つのプレーンの間にある1つの信号層の信号を意味します。 伝送線路と終端 このセクションの目的は、伝送線路とは何かを説明することです。それには、伝送線路上を何が移動しているのか、伝送線路上にスイッチング信号が送られた場合の伝送線路の挙動、最良の信号品質を得るために終端を付けてこれらのスイッチング信号を制御する方法が含まれます。このセクションの最後に、参考文献として読者に役立つと思われる資料の一覧を示します。 このセクションの主要部分とそれに続く部分には、有効な設計ルールとその妥当性の証拠を記載しています。筆者の考えでは、全ての設計ルールは、その限界値が何であるかはもちろんその証拠も伴っている必要があります。 伝送線路とは 突き詰めると
記事を読む
マイクロビア製造プロセスとHDI基板
初期のHDI製造 高密度相互接続プリント基板に関する取り組みが始まったのは、研究者たちがビアサイズの縮小方法を調べ始めた1980年のことです。最初に革新を起こした人物の名前は分かりませんが、初期のパイオニアには、MicroPak LaboratoriesのLarry Burgess氏(LaserViaの開発者)、TektronixのCharles Bauer博士(光誘電ビアの開発者)[1]、ContravesのWalter Schmidt博士(プラズマエッチングビアの開発者)などがいます。 初の製品版のビルドアップ基板(シーケンシャルプリント基板)は、1984年のHewlett-Packardによるレーザードリル加工FINSTRATEコンピューター基板です。1991年には、日本のIBM野洲によるSurface Laminar Circuit(SLC)[2]とスイスのDyconexによるDYCOstrate [3]が続きました。図1は、初のHewlett Packard
記事を読む
高密度接続用の基板材料
この記事では、HDI回路の製造に使用される材料について解説します。プリント基板用の材料については、いくつかの優れた資料(例えば、Holden & Coombsにより編纂された『プリント基板回路ハンドブック』など)が存在するため、ここではHDIに固有の材料に限って解説します。 HDI用の材料 現在のHDI材料市場は、BPA Consulting Ltd.により、全世界で8,300万平方メートルと推定されています。BPA Consulting社は、この市場を使用量の順に11のHDI材料に分類しています。 レーザー穴開け可能プリプレグ - 40.4% RCC - 28.3% 従来型プリプレグ - 17.2% ABFilm - 5.0% エポキシ - 3.3% その他 - 3.2% BT - 1.8% アラミド - 0.4% ポリイミド - 0.3% フォトドライフィルム - 0.1% フォトリキッド - 0.0% プリント基板の主要な材料成分はポリマー樹脂(絶縁体)で、充填剤、強化
記事を読む
高密度相互接続の導入
エレクトロニクスの進化 エレクトロニクスは比較的新しい業界で、トランジスタが発明されて以来まだ65年しか経っていません。真空管が100年ほど前に開発されましたが、第2次世界大戦中に通信、レーダー、弾薬用ヒューズ(特に最初の原子爆弾に使用されたレーダー高度計用電子ヒューズ)によって開花し、世界最大の業界へと進化を遂げました。機能ユニットを形成するために、全ての電子部品を相互接続し、組み立てる必要があります。エレクトロニクスパッケージングは、これら相互接続の設計と製造を統合する技術です。1940年代初頭以降、エレクトロニクスパッケージングの基本的な構築プラットフォームは、プリント基板(PCB)です。このガイドブックでは、図1に示すように、極めて複雑なプリント基板、高密度相互接続 (HDI)を設計するために必要な高度設計アプローチと製造プロセスについての概要を説明します。 本章では、高密度相互接続方法の選択において説明を必要とする基本的考察、主な利点、起こり得る障害について紹介します
記事を読む
次の多層PCBでの非対称ストリップライン
芸術、科学、そして一般的に自然における対称性の美しさは、何か不思議なものがあります。絵画や図面の要素間の視覚的なバランスは、芸術作品の成否を左右することがあります。PCB設計は、工学であると同時に芸術でもあり、対称性は技術的な役割と同じくらい美的な役割を果たします。 高周波同軸ケーブルや導波管の代替品としての謙虚な始まり以来、ストリップラインは多層RFおよびHDI PCB設計者の間で主要な存在です。これらの導体は、周囲の誘電体が放射を抑制し、分散補償を提供する多層PCBの内層に密接に配置することができます。ロバート・バレットに感謝します! 対称対非対称ストリップライン配置 対称ストリップラインは、埋め込まれたマイクロストリップの次に単純な埋め込みトレース配置です。マイクロストリップや埋め込みマイクロストリップトレースとは対照的に、ストリップライントレースはPCBボード層に埋め込まれ、トレースの上下には固体の銅グラウンドプレーンが配置されます。多層PCBの内層には通常
記事を読む
IPCに準拠したフットプリントモデルの操作
エレクトロニクス業界は業界標準の恩恵を受けています。これらの標準により、選択したコンポーネントを設計間で再利用でき、仕様が一貫して、IPCに準拠した製造者が標準プロセスを使用して基板を構築できるという保証を設計者に与えます。これにより生産性が向上し、デバイスが確実に意図したように動作するようになります。 標準のIPC 7350シリーズ(具体的には、IPC 7351B)により、表面実装コンポーネントの領域パターンの一般的な物理設計パラメータが指定されます。この標準に適合させるには、さまざまなタイプのコンポーネントが特定のフットプリントを必要とします。製造業者はこの標準内で対処して、製品が品質の要件と信頼性の要件を満たし、再作業や破棄が確実に減るようにします。 PCBがIPC 7351B標準に準拠するとき、表面実装コンポーネントが標準化された領域の配置に準拠しない場合があります。コンポーネントを使用することはできますが
記事を読む
OnTrack Newsletter December 2018
OnTrack ニュースレター 2018年12月 第2巻第8号 ALTIUM DESIGNER
®
19 リリースのお知らせ Altium Designer 19の新機能をご覧ください 今回リリースされたAltium Designer 19には、いくつかの魅力的な新機能と拡張機能が搭載されています。Altium Disigner最新バージョンの機能について、概要を紹介します。 全文はこちらから 設計技術者へのIPC CIDトレーニングの重要性 CID IPCトレーナー、Stephen Chavez氏の見識 Stephen Chavez氏は電子機器のリードエンジニアで、米国アリゾナ州フェニックス都市圏の有名な軍事航空宇宙企業において、グローバル設計チームを統括しています。Chavez氏は高い技能を持つ技術者で、PCB設計者でもあり、日常業務に留まらず、基板設計に高い情熱を注いでいます。IPC設計委員会の役員会メンバーで、CID、CID+、およびCIT認定のEptacのCIDトレーナーでもあり
記事を読む
コンポーネントの選択を容易にするためのライブラリ検索機能
コンポーネントは、基板を機能させるのに不可欠な要素です。コンポーネントライブラリには、利用可能なコンポーネントに関する全ての情報が1つの場所に含まれているため、コンポーネントライブラリを使うことで、簡単にコンポーネントを基板に追加し、シミュレーションおよびルールチェック機能でコンポーネント情報を使うことができます。他の設計ソフトウェアパッケージの多くでは、これらの機能を別のプログラムに分離しています。または、コンポーネントを検索し調達情報にアクセスするために外部のサードパーティー製ツールを使う必要があります。 複数の独立したプログラムに頼るのでも、サードパーティーのサービスをワークフローに統合するのでもなく、設計およびコンポーネント選択ツールは1つの統合されたインターフェースに表示されるべきです。このようなツールを使えば、次の基板に必要なコンポーネントを簡単に検索および選択できる検索機能を使って広範なコンポーネントライブラリに簡単にアクセスできます
記事を読む
高速 PCB 設計における EMI: 信号の立ち上がり時間を理解する
高速設計についてもっと学び、高速PCBレイアウトにおけるスイッチング速度、立ち上がり時間、およびEMIの対処方法について理解しましょう。
記事を読む
1:45
Altium Designer 19で配線中にレイヤを切り換える方法
ビデオを見る
Altium Designer 19 リリースのお知らせ
Altium Designer 19についてテキストでご紹介するよりも、実際にご覧いただけるようショートビデオをご用意しました。 Altium Designer 19に搭載されている新機能や強化された機能をすべてご覧いただけます。 最新のリリースで発表された主な機能は次のとおりです。 高度なレイヤ構成マネージャー 強化された配線 パッド/ビア主導のポリゴンへのサーマル接続 マイクロビアをサポート 無制限のメカニカルレイヤ 強化されたDraftsman 強化されたBOMエンジン 新しいPart searchパネルとComponentsパネル 強化されたマルチボード プリンテッド エレクトロニクス アルティウムは、 皆様の設計ツールに対するご希望に添えるよう今後も注力していきます。最新機能を通して、弊社の最新テクノロジーをぜひご体験ください。
記事を読む
設計技術者のIPC CID認証の重要性
Stephen Chavez: 氏は電子機器のリードエンジニアで、米国アリゾナ州フェニックス都市圏の有名な軍事航空宇宙企業において、グローバル設計チームを統括しています。Chavez氏は高い技能を持つ技術者で、PCB設計者でもあり、日常業務に留まらず、基板設計に高い情熱を注いでいます。IPC設計委員会の役員会メンバーで、CID、CID+、およびCIT認定のEptacのCIDトレーナーでもあり、PCB007誌にも寄稿しています。この記事では、Chavez氏がCIDトレーニングに情熱を注ぐ理由と、それが今日のPCB設計者にとってどのような重要性を持つのかについて紹介します。 Judy Warner: CID、CID+、およびCITの認証を受けたのはいつですか? Chavez: 初めてのIPC CID認証は、2008年にDieter Bergman氏の講座で取得しました。その後、CID+の認証を2012年のGary Ferrari氏の講座で取得しました。最後に、2016年初めにMITのGary
記事を読む
1:51
新しい Components パネル
ビデオを見る
部品不足の克服、設計リソース、プリンテッドエレクトロニクス
OnTrack Newsletter 2018年11月 第2巻第7号 部品はどこに消えたのか 部品不足の理解と克服 近頃、電気技術者やPCB設計者は皆、コンポーネント不足という危機を感じています。一体どうして、基本的な標準コンデンサが足りなくなったのでしょうか。このやっかいな事態は、いつになったら終わりを迎えるのでしょうか。設計者は部品不足をどうやってしのぎ、作業をスケジュールどおりに終わらせることができるのでしょうか。そこで、この問題についてフランスのLeGrand社、John Watson氏に電話でインタビューしました。世界中の50人もの設計者を監督するPCB設計のリーダーとして、同氏はこの問題に関連する多 全文はこちらから リソース、リソース、 リソースが盛りだくさん 毎年実施している弊社のアンケート結果によると、ニュースレターの人気の1つは「頭脳食」で紹介している技術コンテンツです。お客様がこれからも設計業界のトップに立ち続けることができるよう
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
36
現在のページ
37
ページ
38
ページ
39
ページ
40
ページ
41
Next page
››
Last page
Last »
他のコンテンツを表示する