Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
PCB設計
PCB設計
業界をリードする専門家によるPCB設計の最新情報をご覧ください。
Learn How Altium Supports PCB Designers
Overview
All Content
ウェビナー
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェア
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
Configurable Workflows
GovCloud
MCAD CoDesigner
Octopart
Requirements & Systems Portal
SiliconExpert
Z2Data
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
Americas
EMEA
ANZ
APAC
インピーダンス整合ネットワークの下のグラウンドを取り除くべきですか?
1 min
Blog
電気技術者
PCBレイアウト内のインピーダンス整合ネットワークは、グラウンドをクリアする必要がある場合があります。この短いガイドで、いつグラウンドを取り除くべきかを探ります。
記事を読む
SMAエッジコネクタのRF PCBでの遷移
1 min
Blog
SMAエッジコネクタのフットプリントは、コネクタの同軸ピンの下にグラウンドクリアランスを必要とすることがあります。このような状況が発生する理由と、グラウンドクリアランスの必要性をどのように判断するかを説明します。
記事を読む
RF設計におけるPCBエッジめっきのガイド
1 min
Blog
RF設計では、時々、電磁場を封じ込め、PCBAを頑丈にするためにPCBエッジメッキを使用します。
記事を読む
ChatGPTを使用した自動テスト
1 min
Altium Designer Projects
電気技術者
ChatGPTを効果的に自動テストに活用する方法を学びましょう。
記事を読む
IPCはSubstrateを、製造業者はBoardを重視
2 min
Newsletters
2023年3月24日 OnTrack隔週号 今回のニュースレターでは、パッケージングからコンポーネント、PCBに至るまで、電子機器製造の最新の進展について取り上げます。IC基板の生産を活性化するための新しいパイロットプロジェクトが提案されているほか、最近の買収によって著名な電子機器製造業者が北米で市場シェア第2位となっています。 主要な洞察 IPCのCTCがパッケージングに関するレポートを発表 IPCのChief Technologist Council (CTC) は、集積回路 (IC) 基板を製造するための米国のパイロット設備を提案するレポートを発表しました。 リンク > 製造業者はMESをクラウドに移行 Vishayなどの企業は、従来の製造実行システムをクラウドベースのオプションに移行しています。 リンク > APCTがTTMに次いでNo.2の製造業者に Advanced
記事を読む
PCB設計を機械組立ての欠陥から守る方法
1 min
Blog
最近では、特殊なコンポーネントを組み立てる場合やリフロー工程を省略するため以外に、手作業でPCBを組み立てることはほとんどありません。自動ラインでボードを組み立てる場合、手作業に比べてPCBAが欠陥のない状態であることを期待します。しかし、現実には、最高級の機器を使用しても、PCB組み立てプロセスが完璧であることは決してありません。そして、ごく少数ですが、ボードが品質問題に直面することがたまにあります。ただし、問題を認識しておくことで、設計を最適化し、一般的なPCB組み立ての欠陥を最小限に抑える、あるいは完全に防ぐことができます。 PCB組み立ての欠陥 製造および組み立ての過程で、PCBAには多くの欠陥が生じる可能性があります。設計者による 基本的なDFM実践と、製造業者からのDFMレビューが行われます。これらの欠陥を見る確率は一般的に低いですが、十分な数のボードが生産を通過すれば、統計的に欠陥が発生することが保証されています。ここに示されている主なPCB組み立ての欠陥のリストは次のとおりです。 1. ソルダーブリッジ PCB組み立て時に発生し、通電時に深刻な損傷を引き起こす可能性がある最も一般的な欠陥の一つは、 はんだブリッジまたは細ピッチ部品のリード間のショートです。ショートは通常非常に小さく、視覚検査では見逃されやすいです。PCB組み立て中のショートは、さまざまな要因によって引き起こされる可能性があります。たとえば、間隔が狭い広いコンポーネントパッドがはんだブリッジを引き起こす可能性があります。ショートは、過度に厚いステンシルやおそらく汚れたステンシルによってパッドに過剰なはんだが配置された場合にも発生する可能性があります。 はんだブリッジショート回路についてもっと学ぶ 視覚的に識別されたはんだブリッジの欠陥。[出典: Springer] 2. 開放ジョイント 不十分なはんだまたははんだ付け中の部品の浮き上がりによって、オープンジョイントが発生します(下記のトゥームストーニングを参照)。拡大鏡を使用していない限り、 PCBパッド上の一部のオープンジョイントはほとんど検出不可能です。視覚的なチェックにより、すべての表面実装部品が適切にはんだ付けされているかどうかを示します。しかし、部品のリードとはんだパッドの間にわずかな隙間があるだけで、電子機器が正しく機能しない原因となります。さらに、ステンシルが薄すぎると、はんだペーストが少なく預けられ、結果としてオープンジョイントが発生します。視覚的に識別するのが難しい場合でも、オープンジョイントは一般的にDMMで高抵抗として読み取られます。これは、オープンジョイントと疑われるものを確認する簡単な方法を提供します。 3. 浮いているSMD部品 スルーホール部品は、リードがスルーホールに挿入されることによる自重とグリップによって位置を保持できます。これはSMDパッドには当てはまりません。これらの部品は基本的にリフローに入る前にはんだペーストの上に置かれます。パッド上のはんだペーストの量と部品パッド間の温度差は、次の2つの問題を引き起こす可能性があります: 浮遊する部品が歪む 一方のパッドでの不十分な濡れにより、墓石現象が発生
記事を読む
DIPコンポーネントをまだ使っている人はいますか?
1 min
Blog
DIPコンポーネントは、新製品のプロフェッショナルなPCB設計プロジェクトではあまり使用されませんが、レガシープロダクトではまだこれらの部品が必要になることがあります。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
39
現在のページ
40
ページ
41
ページ
42
ページ
43
ページ
44
Next page
››
Last page
Last »