Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
PCB設計
PCB設計
業界をリードする専門家によるPCB設計の最新情報をご覧ください。
Learn How Altium Supports PCB Designers
Overview
All Content
ウェビナー
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェア
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
Configurable Workflows
GovCloud
MCAD CoDesigner
Octopart
Requirements & Systems Portal
SiliconExpert
Z2Data
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
Americas
EMEA
ANZ
APAC
電子部品の湿度感受性レベル
1 min
Blog
電子部品を構成するために使用されるさまざまな材料は、時間が経つにつれて空気中の湿気を吸収することがあります。これは、部品が短期間で急激な高温にさらされるリフローはんだ付けが導入された際に初めて問題となりました。これは、リフロー工程中のピーク温度が高くなる鉛フリーはんだへの切り替えによってさらに悪化しました。湿気感受性の問題が増加した他の要因には、より高価な密閉型材料に比べて劣る特性を持つ安価で薄い材料、例えばプラスチックなどがあります。 湿気が蒸発し、部品に損傷を与えることがあります。これは、部品パッケージを弱める微細な亀裂、部品の一部が分離する完全な亀裂、またはダイパッドとその樹脂カバーの間の表面剥離の形であるかもしれません。 損傷のタイプに関わらず、結果としてその部品は交換する必要があります。 湿気の蒸発によって引き起こされる損傷は、すぐには明らかにならず、デバイスが組み立てられてテストされた後にのみ現れる可能性があるという課題があります。それは、デバイスが正しく動作しているように見えるほど小さなものかもしれませんが、その後のサービス中に早期に故障する可能性があります。通常、パッケージが最も薄い部分で亀裂が発生し、表面実装部品の場合、通常はPCBに近い裏側で、したがって視界から外れています。同様に、マイクロクラッキングも、部品の表面の見える部分にない限り、視覚的には明らかではありません。 主な問題は、マイクロコントローラーや他の複雑なデバイスでの湿気の蒸発による損傷です。ダイからの繊細な金属線と表面実装パッドは通常、プラスチックで封入されています。このパッケージングの亀裂は、ワイヤーを断線させる可能性があり、それは MCUが動作するまで検出されないでしょう、それが電源ピンでない限り。 この問題はどれほど一般的ですか? この問題が発生する可能性は、使用される包装材料の種類と、部品が湿気にさらされる時間の長さによります。これは主に、部品がどのくらいの期間保管されるか、どのように保護されるか、そしてどのような環境条件下で保管されるかによります。部品が保管を離れ、保護包装から取り出されると、これはそのフロアライフによります。これは、部品が周囲の環境条件にさらされる時間の長さと、それらの条件が何であるかです。 部品に湿気が浸透する速度は、その湿度と温度に依存します。温度が高いほど、環境中の湿気が包装材料に浸透する速度は速くなります。この吸収は、材料内の湿気濃度が環境の湿気濃度と一致するまで続きます。相対湿度が高いほど、吸収される湿気の量は多くなります。 部品の製造中の露出時間と、リフローはんだ付けの準備が整ったPCBに組み込まれた後の期間は、保管時間と保管を離れてPCBに取り付けられるまでの時間と比較して無視できます。重要な環境要因は、湿度、温度、そしてこの時間の長さです。 湿気に敏感な包装材料の使用には、集積回路やセンサーなどの封入コンポーネントが含まれ、コネクターやPCBにも及びます。デバイス内の各アイテムのデータシートを確認することによってのみ、 どの部品が湿気に敏感か 保管寿命 湿気に敏感なコンポーネントは、通常、乾燥剤ジェルと不活性環境を備えた密封された保護包装で出荷されるべきです。包装には、コンポーネントを保管できる最大の期間が示されており、通常は数年です。特に湿気に敏感な部品は、通常、部品の健康状態を視覚的に示すために、包装に湿度指標が含まれて出荷されます。保護包装が損なわれず、保管施設の環境条件が仕様内にある限り、これは他のコンポーネントタイプを扱うのと変わりません。 湿気感受性レベル 標準化された湿度感受性レベル(MSL)は、どの部品が湿気に敏感かを識別するために定義されています。これらのレベルは、部品が湿気の影響を受ける前に、周囲の室温と湿度レベルにどの程度さらされることができるかを決定します。ここで、周囲とは30 oC以下、相対湿度60%以下を指しますが、無制限のMSL 1については、30 oC以下、相対湿度85%以下と定義されています。 MSL
記事を読む
PCBリファレンスデザイン使用のベストプラクティス
1 min
Blog
リファレンスデザインは新システムの構築を始める際には役立ちますが、PCBに使用する場合は、次の落とし穴に注意してください。
記事を読む
Altium Designerがサポートするガーバーとその後継フォーマット
1 min
Blog
設計を終えたPCBを製作する場合には、ガーバーデータを出力してプリント基板メーカに渡します。そして、基板メーカーではこのガーバーデータからアートワークフィルムを作成して基板上に配線パターンを形成します。このガーバーのフォーマットは標準化されたもの(または、標準的に利用されているもの)が複数存在します。Altium Designerはこれらを広範囲にサポートしています。 これらのフォーマットの中で業界標準として使用されているのがガーバー RS-274Xです。これは、拡張ガーバーと呼ばれ、基板メーカとのデータの受け渡しは、ほとんどどこのフォーマットで行われています。 ガーバー RS-274Xは全ての基板メーカが例外なくサポートしており、標準中の標準であるといえます。しかし、プリント基板の多層化が進む中で、よりインテリジェントなフォーマットへの移行が進みつつあります。 そこで、今回はAltium Designerがサポートする新旧のフォーマットを、時系列的に見ていきたいと思います。 ガーバーRS-274DとRS-274X 業界標準として普及しているガーバーフォーマットにはRS-274DとRS-274Xがあり、それぞれ標準ガーバー、拡張ガーバーと呼ばれています。 ガーバーフォーマットは、もともとはフィルム作画機(フォトプロッタ)メーカーGerber-Systems社(現Ucamco社)の社内規格でしたが、デファクト・スタンダードとして定着したため、1979年にEIA(米国電子工業会)でRS-274D として規格化されました。 このガーバーRS-274Dは、アートワークを「点」と「線」の組み合わせだけで表現するベクトルデータです。これには、作画するすべての「点」と「線」の座標が示されています。そして、この「点」をFlash、「線」をDrawと呼んでいます。しかし、この「点」と「線」には形状とサイズが示されておらず、Dコードと呼ばれる作画に使用するツールの番号が示されています。このため、実際に作画する際には、このDコードに対してツールの形状とサイズを与えなくてはなりません。 初期の作画機(フォトプロッタ)では、シャッター付きの穴に光を通して光束を制御していました。このため、作画ツールをアパーチャ(穴)と呼び、そのサイズを示すリストをアパーチャ・テーブルと呼んでいます。RS-274Dで作画する際にはガーバーデータだけでなく、必ずこのアパーチャ・テーブルが必要になります。 また、RS-274D には面(ポリゴンやリジョン)を表現するパラメータがありませんので、ベタで塗りつぶす部分には、多数の「線」を並べなくてはなりません。このため、基板の配線パターンが単純であってもベタ領域が多いとデータ量が激増します。 このようなRS-274Dの改良版としてガーバーRS-274Xフォーマットが策定されました。これには、アパーチャの定義が含まれており、別個にアパーチャ・テーブルを用意する必要はありません。また、ラスタープロッターへの対応として「点」と「線」だけではなく「面」の表現が可能になっています。これらの利点によってRS-274X への移行が急速に進み、今ではRS-274Dが使われる事は無くなりました。 しかし、何十年も電子機器を作り続けている企業では、新旧のガーバーファイルが残されており、再利用の際にはそれらがRS-274D(標準ガーバー)なのかRS-274X(拡張 ガーバー)なのかを知らなくてはなりません。これは、ファイルをテキストエディタで開いてみるとすぐに見分けられます。RS-274Xでは座標値の記述の前にDコード(ツールの形状とサイズ)が定義されており、この記述が無ければRS-274Dである事がわかります。
記事を読む
緯度の解剖学 パートワン:線形システムの進化の結果としてのパルス幅変調(PWM)
1 min
Blog
素晴らしいアイデアと賢い解決策 技術の世界には、最終的な目標と中間目標の両方を達成するためのさまざまな技術があります。一部の技術は非常に成功しており、高い効率で一般的に使用されています。電子工学も例外ではありません。素晴らしいアイデアと独創的な解決策は、他の工学分野よりもおそらくこの分野で見つかり、適用されています。最大の例は、パルス幅変調(PWM)信号(エネルギー)の使用であり、これは現代の電子デバイスにおいて、自動操縦装置、スマートフォン、タブレット、ノートパソコン、LEDスポットライト、さらには電子玩具に至るまで、どれにでも適用され、次の問題を効果的かつ経済的に解決するのに役立ちます: 電子デバイスの個々の回路、ノード、およびユニットの電源供給のための電圧または電流の変換(回路の供給電圧の安定化、LEDベースの照明装置の電流の安定化) オーディオ信号のパワーレンジの高効率な増幅(効率が100%に近いクラスDのオーディオパワーアンプ) 油圧または空気圧バルブのようなアクチュエータの制御(翼の空力面、航空機とロケットの舵、自動車の自動変速機、内燃機関とタービンの制御ユニット、最も広い意味での産業自動化の駆動) デジタルコードを特定の比例する電圧または電流値に変換すること(多くのDACへの代替) 作動装置の位置に関する情報(例えば、UAVとロボットのステアリングギアの制御)の伝達 この事実は、PWMを実際の応用で徹底的に研究し、レビューするためのリストのトップに置く。 PWMを効果的に適用するためには、過去にエンジニアが直面した工学的困難と、その後結合された効果的な完全なPWM電力ソリューションに至る考えやアイデアを理解することが必要である。 工学的困難 例として、安定化された供給電圧5Vで、電流2Aを消費するデバイスがあります。出力電圧が10Vから36Vの電源を持っています。この電源を使ってデバイスをどのように動かすことができるでしょうか?最初の考えは、5Vを超える余分な入力電圧を「消散」させるために線形レギュレータを使用することです。したがって、デバイス用の線形電圧レギュレータを作成し、Altium Designer - Mixed Simulation*を使用してその特性を分析しましょう。 特別な特性を持つコンポーネントを探す問題を解消するために、Altium Designerに統合されている標準ライブラリSimulation Generic Componentsの電子コンポーネントを使用して回路図を作成します。 新しいプロジェクトで、オペアンプに基づいた「線形レギュレータ」の回路図を作成します。
記事を読む
TRANSLATE:
設計ワークフローでのPCB熱シミュレーションおよび解析ソフトウェアの使用
1 min
Blog
Altium Designer と Altium 365 で、PCB の熱解析ワークフローを効率化しましょう。
記事を読む
PCB熱解析の完全ガイド
1 min
Blog
PCB設計者
電気技術者
シミュレーションエンジニア
回路基板が動作中にどのように熱くなるかは、主にPCB基板と銅伝導体の物理的特性で決まります。回路基板の熱解析方法は、動作中に基板がいつどこで熱くなるか、また基板がどれだけ熱くなるかを予測することを目的としています。この重要な解析の部分は、コンポーネントレベルと基板レベルの信頼性を確保することを目的としており、設計に関する多くの決定に影響することがあります。 最適なプリント基板設計ソフトウェアを使用すれば、信頼性が高く、動作時に温度が低い基板を簡単に設計できます。Altium Designerには、信頼性を確保する材料ライブラリを備えた最高の回路基板設計ツールがあり、PCBレイアウトとスタックアップで熱管理のベストプラクティスを実施するために必要なものがすべて揃っています。ここでは、回路基板の熱解析について理解を深め、次に基盤を設計する際に高い信頼性を備えた基板にする方法を説明します。 Altium Designer 高度なレイアウト機能、包括的な基板材料ライブラリ、生産計画機能を統合する統合PCB設計パッケージ。 回路基板とコンポーネントの材質によって、動作中に基板内で熱がどのように移動するかが決まります。残念ながら、PCB基板の材料は絶縁体であり、高温のコンポーネントからの熱の放散を妨げます。銅伝導体とプレーン層は役に立ちますが、動作中の基板の平衡温度に影響を与える設計上のシンプルな選択肢がいくつかあります。これらの設計面での決定は、次の3つの領域に焦点を当てています。 回路基板のスタックアップ設計 基板材料の選択 コンポーネントの選択とレイアウト 電動ファンやヒートシンクなどのほか、いくつかのシンプルな設計の選択肢によって、基板を低温で動作させ、早期故障を防ぐことができます。適切な設計ツールのセットを使用すると、熱管理のベストプラクティスを簡単に実装できます。 熱解析を使用して回路基板を設計する 回路基板設計の熱解析の目標は、温度を制限内に保つためにファン、ヒートシンク、追加の銅箔、またはサーマルビアなどの冷却手段が必要となるタイミングを判断することです。設計者は、基板内のコンポーネントの最大許容温度を選択し、コンポーネントが消費する電力に基づいてコンポーネントの温度がどのように変化するかを調べる必要があります。コンポーネントの温度が許容温度制限を超える場合は、ヒートシンクやファンなどの追加の冷却手段が必要になる場合があります。 まず、集積回路のコンポーネントのデータシートに通常記載されているコンポーネントの熱インピーダンスを確認します。この値は、低電力アンプやICでは最高20℃/Wと低く、強力なマイクロプロセッサーでは最高200℃/Wと高くなることがあります。動作温度を求めるには、コンポーネントの消費電力に熱インピーダンスを掛けます。SOTパッケージ内のMOSFETの例では、これは次のように定義されます。 熱インピーダンスで定義されるコンポーネントの温度。 コンポーネントの温度が高すぎる場合、PCBレイアウト内のコンポーネントの熱インピーダンスを下げるため、コンポーネントから熱を放散するために実行できる手順がいくつかあります。 接地されたポリゴンを使用してサーマルビアをコンポーネントの下に追加する 熱伝導率の高いPCB基板材料を使用する コンポーネントに放熱板を追加する プレーン層など、コンポーネントの下にさらに多くの銅箔を含める
記事を読む
Altium DesignerでAC/DCコンバータ回路を設計する方法
1 min
Blog
AC/DCコンバーター回路は、その名前が示すとおり、高調波AC入力を受け取り、それをDC出力に変換します。これらの回路は単に高レベルからで、ブレッドボード上で低電力で動作する場合、実際のAC/DCコンバータ回路は単なる変圧器と整流器回路に比べてもっと複雑です。これらの回路に適切なコンポーネント/部品を見つけて正確な電力シミュレーションを実行するには、強力な回路設計ツールを含む適切なPCB設計ソフトウェアが必要です。 電源、レギュレーター、変換器を設計する必要がある場合や、その他の電源システムを設計する必要がある場合でも、Altium Designerには必要な設計ユーティリティが備わっています。Altium Designerの最も優れている点は、PCB設計に必要なすべてが単一のプログラムに含まれている統合設計環境であることです。AC/DCコンバーター回路と電源システムに必要なその他のサポート回路の設計についての詳細は、当社のガイドをお読みください。 Altium Designer 強力なPCBエディターとSPICEシミュレーションパッケージを備え、回路設計機能を統合したPCB設計パッケージ。 壁面電源に接続するほぼすべてのデバイスは、壁面からのAC電力を、集積回路で使用できるDC電力に変換する必要があります。これは、多くの製品がAC/DCコンバーター回路に加えて、電力レギュレーター、PFC回路、高効率電力変換のための制御回路などの他の回路を必要とすることを意味します。成功に向けて準備を整えるには、適切な設計戦略が必要であり、システムのさまざまな部分を統合して完全な製品にする必要があります。 量産グレードの電源システムには安全で機能的なレイアウトが必要であり、設計が意図したとおりに動作することを確認するためにシミュレーションで検証する必要もあります。統合設計パッケージを使用すると、電力コンバータの回路図、高品質なPCBレイアウト、回路シミュレーションを1つのプログラムで作成できます。 AC/DCコンバーター回路を設計する AC/DCコンバーター回路は整流に依存しており、入力AC電力が残留リップルのある不安定なDC出力に変換されます。AC/DCコンバーター回路に含まれる基本コンポーネントは次のとおりです。 変圧器: これは、システムの負荷に適した値までグリッド電力を増減します。変圧器の巻数比によって、ダイオードブリッジとコンデンサーへの電圧と電流の出力が決まります。 ダイオードブリッジ整流器: この小さな回路は、AC入力信号の絶対値を受け取り、単一極性の時変信号を生成します。設計要件は、ブリッジ整流回路のダイオードが順電流を超えて動作することです。 コンデンサー: 大きなコンデンサーは、整流されたAC信号を安定させ、リップルが残ったDC電圧を生成するフィルターとして使用されます。実効直列抵抗がより小さく、コンデンサーがより大きいことが、高い充電容量と放電の高速度を確保するのに理想的なコンポーネントです。 このコンポーネント/部品のリストは、AC/DCコンバータ回路を作成するために最低限必要なもので、以下が一つの例です。設計するAC/DCコンバーターは、実際のコンポーネントデータとシミュレーションモデルを使用して強力な回路図エディターで作成する必要があり、その作業を行うには最適な設計ソフトウェアが必要です。 実際のコンポーネントを使用してAC/DCコンバータ回路の回路図を作成する AC/DCコンバータ回路の設計には、コンポーネントライブラリとPCBサプライチェーンへの接続が統合された最高の回路図設計ツールを必ず使用してください。Altium
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
69
現在のページ
70
ページ
71
ページ
72
ページ
73
ページ
74
Next page
››
Last page
Last »