PCB設計者

PCB設計者のためのリソースと情報をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
Altium 365におけるPCBプロジェクト管理でのユーザーアクセス Altium 365におけるPCBプロジェクト管理でのユーザーアクセス 1 min Blog 技術マネージャー PCB設計者 プロジェクトリーダー(マネージャー) 技術マネージャー 技術マネージャー PCB設計者 PCB設計者 プロジェクトリーダー(マネージャー) プロジェクトリーダー(マネージャー) チームと協力してクライアントと話す際、私たちはファイルの送受信やクライアントのFTPサイトでの設計データの更新を確認するのに多くの時間を費やしていました。しかし、Altium 365を使用し始めてからは、PCB設計、リビジョン追跡、PCBプロジェクト管理のための安全なクラウドコラボレーションツールを持つことができました。この環境での課題は、機密プロジェクトへのユーザーアクセスを制御することです。顧客は、クラウドプラットフォームにアクセスできる全員に自分たちの設計が露出するのを常に望んでいるわけではなく、一部の設計では制限されたアクセスが必要になります(例えば、防衛や航空宇宙分野)。 このような環境で作業している場合、PCB設計データを安全なプラットフォームで共有し、追跡する必要がある場合、クライアントのデータへのアクセスを制御する必要があります。Altium 365のユーザー管理機能を使用すると、どのプロジェクトに誰がアクセスできるか、各ユーザーの権限レベルを簡単に制御できます。これがAltium 365でどのように機能し、安全なクラウドコラボレーション環境でユーザーが見ることができるアクセスレベルです。 ALTIUM 365® Altium Designer®および人気のある機械設計ツールと統合するPCBプロジェクト管理およびデータ管理プラットフォームです。 クラウドコラボレーションは、多くの重要なコミュニケーションや設計タスクを非常に便利にしますが、理解できるセキュリティ上の懸念を生み出します。クライアントは、プロジェクトに取り組んでいない設計者に自分たちの設計や知的財産をさらされたくない場合があります。同様に、設計者は異なるプロジェクトに対して異なるアクセスレベル(閲覧対編集)を必要とし、特定のチームメンバーは異なるプロジェクトに対してさまざまなレベルのアクセスを必要とします。 これらすべてのアクセスポイントを管理しながら同時にリビジョンとプロジェクトのコメントを追跡することは、専用のPCBプロジェクト管理プラットフォームがなければ極めて困難です。PCB設計管理とコラボレーションには、ユーザーアクセスとデータ管理システムが設計ツールと統合する必要があります。Altium 365を使用して、セキュアなクラウドコラボレーションプラットフォームを作成し、誰が設計データを閲覧および編集できるかを制御できます。ユーザーアクセスを制御し、リビジョンを追跡し、設計データを管理し、さらに多くのことを行うために必要なツールを手に入れることができます。 クラウドでのユーザーアクセス制御の開始方法 Altium 365ワークスペースを作成すると、デザインクリエーターはプロジェクトを作成し、それをAltium 365インスタンスにバックアップすることができます。その後、作成したプロジェクトに取り組むために、デザインチームの他のメンバーを招待することができます。これらのプロジェクトにリビジョンが追加されると、ユーザーレベルで追跡され、プロジェクトマネージャーはどのリビジョンがプロジェクトに適用されたかを確認できます。 このような機能は非常に価値がありますが、アクセスはいくつかの方法で制御する必要があります。クライアントには特定のデザイナーにのみ公開すべき機密データがある場合があります。防衛電子プロジェクトのような場合には、特定のデザイナーが契約合意書に記載されており、プロジェクトマネージャーは特定のプロジェクトを誰が閲覧または編集できるかを制御する必要があります。 プロジェクトマネージャーが安全なクラウドコラボレーション環境とワークフローを作成するために行う必要がある重要なタスクは以下の通りです: アクセスの付与と取り消し:マネージャーは直接デザインデータを編集する必要はありませんが、プロジェクトのさまざまな段階でアクセスを付与したり取り消したりする必要がしばしばあります。 エンジニアの閲覧対編集アクセス:デザイナーは、自分が作成したプロジェクトや直接取り組んでいるプロジェクトのみを編集できるようにするべきです。 記事を読む
PCB設計レビュー Altium 365によるオンラインPCB設計レビュー 1 min Blog 電気技術者 PCB設計者 電気技術者 電気技術者 PCB設計者 PCB設計者 PCBを好きなように設計することはできますが、PCB設計レビューと製造性チェックに合格しなければ、実際のボードにはなり得ません。PCB設計レビューは、DRCのチェックだけではなく、製造業者の能力とプロセスを満たす設計を行うことについてです。PCB設計レビューはまた、設計チームが製造ファイルと納品物を検査し、製造と組み立てのためにデータを送信する前にエラーがないか確認する機会を提供します。通常、製造業者は基本的なPCB設計レビューを行い、ボードが自社の能力に適合するかを確認しますが、設計チームは設計を生産に移す前にファイルを徹底的にレビューする時間を取るべきです。チームが生産前にエラーを特定して修正できれば、市場投入までの時間を短縮し、設計が大量生産に移る際の品質と収率を確保するのに役立ちます。 多くの設計がより高度になっているにもかかわらず、設計レビューに利用できるツールはデスクトップ設計ソフトウェアに後れを取っています。Altium 365のようなクラウドコラボレーションプラットフォームを使用すると、製造業者、他の設計者、または顧客と設計データを安全なオンラインインターフェースで即座に共有できます。チームの任意のメンバーが製造リリース前に設計を閲覧でき、製造業者はPCBレイアウト内の特定の点を迅速に特定し、収率と品質を確保するために変更が必要かどうかを判断できます。PCB設計レビュープロセスをサポートするためにサードパーティのソフトウェアに投資する前に、Altium 365での効果的なコラボレーションがPCB設計レビューを迅速に進めるのにどのように役立つかを確認してください。 PCB設計レビュープロセスを迅速に、そしてPCB設計アプリケーション内ですべて完了できたらどうでしょうか?Altium 365のクラウドコラボレーションツールを使用すると、データをクラウドリポジトリに迅速に配置し、他の設計者や製造業者と共有できます。このプラットフォームはAltium Designer内で即座にアクセス可能であり、チームの誰もがクラウドからローカルマシンにデータを引き出して編集できるようになります。これにより、製造に向けてPCB設計レビューおよび適格性フェーズを迅速に進めることができます。 PCB設計レビューには何が含まれますか? デザインデータを製造業者に送信したら、彼らはあなたのレイアウト、組み立て、Gerberファイル、そしてBOMを確認して、ボードが大量生産できるかどうかを確認します。製造業者は、デザインにいくつかの変更が必要であることを指摘する必要があるかもしれませんし、自分たちで変更を行う必要があるかもしれません。これらの作業は、デザインデータがAltium Designer内で設計者と製造業者によって直接アクセス可能な場合、迅速に完了することができます。 これらのタスクはAltium 365で可能になり、製造業者のバージョンのAltium Designerへの直接のパイプラインも提供します。PCBデザインレビュー中に確認すべきいくつかの重要なポイントがあります: キープイン/キープアウト領域 パッドからトレース、パッドからパッド、そしてパッドからビアまでのクリアランス ドリルビット/ビアのサイズと最小トレース幅 シルクスクリーンのクリアランス 接続されていないプレーン、パッド、ビア ガーバーデータとレイアウトの不一致 製造業者が設計データ内でこれらのいずれかを発見した場合、Altium 記事を読む
高電圧設計におけるIPC-2221計算機の使用 高電圧設計のためのIPC-2221 PCBクリアランス計算機の使用 1 min Blog PCB設計者 電気技術者 PCB設計者 PCB設計者 電気技術者 電気技術者 PCB設計およびアセンブリの規格は、生産性を制限するものではありません。代わりに、複数の業界にわたって製品設計と性能の統一された期待値を作成するのに役立ちます。特定の設計用の計算機、監査や検査のプロセスなど、ツールはコンプライアンス向けに標準化されます。 高電圧PCB設計において、PCB設計の重要な一般規格はIPC-2221です。多くの重要な設計的側面がこの設計規格にまとめられており、そのいくつかは単純な数式に要約されています。高電圧PCBの場合、IPC-2221計算機を使用すると、PCB上の導電要素間の適切な間隔要件をすばやく判断できます。これにより、次の高電圧基板が動作電圧で安全に保たれるようになります。設計ソフトウェアにこれらの仕様が自動化された設計ルールとして含まれている場合、生産性を維持し、基板を構築する際のレイアウトの間違いを避けることができます。 IPC-2221とは IPC-2221(2012年発効のレビジョンB)は、多くのPCBの設計的側面を定義する、一般的に受け入れられている業界規格です。例えば、材料 (基板やメッキを含む)、試験性、 熱管理とサーマルリリーフ、 アニュラリングなどに関する設計要件が挙げられます。 一部の設計ガイドラインは、より具体的な設計規格に取って代わられています。例えば、IPC-6012とIPC-6018は、それぞれリジッドPCBと高周波PCBの設計仕様を提供します。これらの追加規格は、一般的なPCBのIPC-2221規格とほぼ一致するように意図されています。 ただし、IPC-2221は通常、製品の信頼性や製造歩留まり/欠陥を評価するために使用される認定規格ではありません。リジッド基板の場合、IPC-6012またはIPC-A-600のいずれかが、製造されたリジッドPCBの認定に通常使用されます。 IPC-2221B 高電圧設計における導体スペーシング 高電圧PCB設計の重要な設計要件は、IPC-2221B規格で指定されています。これらの1つは導体クリアランスであり、次の2つの点に対処することを目的としています。 高電界強度でのコロナまたは絶縁体破壊の可能性 樹枝状成長と呼ばれることもある導電性陽極フィラメント形成の可能性( 下記参照) 最初のポイントは、PCBの導体間に適切な最小クリアランスを設定することで最も簡単に制御できるため、最も重要です。2番目の影響は、適切な配線間隔、 材料の選択、処理での一般的な清浄度によっても抑えることができます。これらの影響を防ぐために必要な間隔は、IPC-2221規格の2つの導体間の電圧の関数としてまとめられています。 下の画像は、IPC-2221規格の表6-1を示しています。これらの値は、2つの導体間の電圧の関数として最小導体間隔を示しています。これらの値は、導体間のピークACまたはDC電圧のいずれかで指定されます。IPC-2221では、500Vまでの電圧に対して固定された最小導体間隔値のみを規定していることに注意してください。2本の導体間の電圧が500Vを超えると、下表に示す電圧ごとのクリアランスの値を用いて、最小導体間隔を計算することになります。500Vを超える各電圧は、表の一番下の行に示されている量だけ、必要な最小クリアランスに追加されます。 高電流時の温度上昇 すべての高電圧PCBが高電流で動作するわけではありませんが、高電流を使用するPCBは、導体の大きさが十分でない場合に高温上昇になる可能性があります。PCBの温度上昇は、導体のDC抵抗に関連するジュール熱によって発生します。したがって、高電流を流す導体の断面積は、電流も大きい場合は大きくする必要があります。 記事を読む
DDR5 PCB設計と信号整合性:設計者が知っておくべきこと DDR5 PCBレイアウト、ルーティング、およびシグナルインテグリティガイドライン 1 min Blog PCB設計者 電気技術者 PCB設計者 PCB設計者 電気技術者 電気技術者 DDR5規格のリリースが2020年7月に発表されました。これは、提案された規格に従う最初のRAMモジュールの開発が発表されてから約18ヶ月後のことです。この規格では、ピーク速度が5200 MT/秒/ピンを超えることが可能であり(DDR4の3200 MT/秒/ピンと比較して)、JEDECで評価された速度は最大6400 MT/秒/ピン、チャネル帯域幅は最大300 GB/秒まで増加します。 この新世代のメモリは、8GB、16GB、32GBの容量で、技術がより商業化されるにつれて、以前の世代よりも需要が上回ると予想されます。 より高速な速度、より低い供給電圧、そしてより高いチャネル損失は、DDR5のPCBレイアウトと設計において厳格なマージンと許容誤差を生み出しますが、DDR5チャネルの信号整合性は一般的な信号整合性メトリクスを用いて評価することができます。この分野には取り上げるべきことがたくさんありますが、この記事では、DDR5における信号整合性を確保するための重要なDDR5 PCBレイアウトおよびルーティングガイドライン、およびDDR5チャネルにおける重要な信号整合性メトリクスに焦点を当てます。 DDR5アイダイアグラムとインパルス応答 DDR5チャネルの信号整合性を調べるために使用される重要なシミュレーションには、アイダイアグラムとインパルス応答の2つがあります。アイダイアグラムは、シミュレートすることも、測定することもできますし、終端されたチャネルでのインパルス応答も同様です。どちらもチャネルが単一ビットおよびビットストリームを伝送する能力を測定し、チャネルの解析モデルが因果関係の観点から評価されることを可能にします。以下の表は、これらの測定/シミュレーションから得られる重要な情報をまとめたものです。 インパルス応答 アイダイアグラム 測定内容 単一ビット応答 ビットストリームへの応答 測定から判断できること - チャネル損失 (S21) - 記事を読む
高速PCB設計においては、グラウンドプレーンのギャップを横切ってはいけません 高速PCB設計においては、グラウンドプレーンのギャップを横切ってはいけません 1 min Blog PCB設計者 PCB設計者 PCB設計者 電子機器やPCBのフォーラムをよく閲覧していますが、同じ質問が何度も何度もされています。なぜグラウンドプレーンの割れ目を越えてトレースを引いてはいけないのか?この質問は、ハイスピードPCB設計にちょうど足を踏み入れたばかりのプロのデザイナーからメーカーまで、誰もが尋ねます。プロの信号完全性エンジニアにとって、答えは明らかでしょう。 長年のPCBレイアウトエンジニアであろうと、たまにデザインする人であろうと、この質問への答えを理解することは役立ちます。答えは常に絶対的な表現で枠付けられます。PCB設計の質問に絶対的な用語で答えることはあまり好きではありませんが、この場合は答えが明確です:グラウンドプレーンの隙間を越えて信号をルーティングしてはいけません。さらに詳しく掘り下げて、なぜグラウンドプレーンの隙間を越えてトレースを引いてはいけないのか理解しましょう。 グラウンドプレーンの隙間:低速および高速設計 この質問に答えるには、DC、低速、高速での信号の振る舞いを考慮する必要があります。これは、各タイプの信号がこの基準面で異なるリターンパスを誘導するためです。信号がたどるリターンパスは、基板内で生成されるEMIに及ぼす重要な影響、および特定の回路がEMIに対してどれほど感受性を持つかについて、いくつか重要な影響を及ぼします。PCB内でリターンパスがどのように形成されるかをよりよく理解するために、 この記事と、Francesco Podericoからの 役立つガイドをご覧ください。 PCB内でリターン電流がどのように形成されるかを理解すれば、それがEMIと信号の整合性にどのように影響するかを見るのは簡単です。ここで重要な理由です—そしてそれはグラウンドプレーンのギャップを越えるルーティングに関連しています。ボード内のリターン電流によって形成されるループは、2つの重要な振る舞いを決定します: EMIの感受性。回路内の供給電流とリターン電流によって作られるループは、ボードのEMIに対する感受性を決定します。大きな電流ループを持つ回路は、より大きな寄生インダクタンスを持ち、放射されるEMIに対してより感受性が高くなります。 スイッチング信号におけるリンギング。回路内の寄生インダクタンスは、信号がレベル間で切り替わる際の 過渡応答の減衰レベルを決定します。回路内の寄生キャパシタンスと併せて考えると、これら二つの量は過渡応答の自然周波数と減衰振動周波数を決定します。 DC、低速、高速信号を詳しく見てみましょう: DC電圧/電流 基板がDC電源で動作する場合、リターン電流は信号トレースの直下ではなく、供給リターンポイントに直線的に戻るため、リターンパスを実質的に制御することはできません。これは、大きな寄生インダクタンスのために基板がEMIに弱くなることを意味します。電源が切り替わらないため、過渡振動がないと思われがちですが、マイクロストリップトレースがグラウンドプレーンのギャップを越えてルーティングされている場合でも、EMIの感受性の問題は依然として存在します。DCループのインダクタンスをできるだけ低く保つべきであり、ループインダクタンスを減らすためには、グラウンドプレーンのギャップを越えるルーティングを避けるのが最善です。 低速信号 DC信号と同様に、リターンパスは回路のループインダクタンスを決定し、これが EMI感受性および過渡応答の減衰を決定します。ループインダクタンスが大きい場合、減衰率は低くなり、DC信号の場合と同様に、グラウンドプレーンのギャップを越えてルーティングするとループインダクタンスが増加し、信号の整合性、電力の整合性、およびEMIに影響を与えます。 残念ながら、低速信号はある種の遺物であり、TTL以上の速度のロジックを使用するすべてのボードは高速回路として振る舞います。低速信号(一般に数十nsの立ち上がり時間とそれより遅い)では、特定の回路のリンギング振幅は通常、低く抑えられていたため、気づかれないことが多かったです。したがって、信号がグラウンドプレーンのギャップを越えてルーティングされない限り、ループインダクタンスは通常、激しいリンギング、EMI感受性、および関連する電力整合性の問題を防ぐのに十分に低かったです(下記参照)。 高速信号 低速で動作するように設計された基板に高速信号を流すと、与えられた回路ループのインダクタンスに対して、リンギングの振幅が大きくなります。これは、基板内のループインダクタンスをできるだけ小さく保つ必要性を再び示しています。目標は、与えられた相互接続においてリンギングの振幅を減少させるために、できるだけ多くの減衰を提供することです。再び、グラウンドプレーンのギャップを越えてルーティングすることで、ループインダクタンスの増加を避けることができます。さらに、高速回路を運ぶ信号層の下にグラウンドプレーンを配置することで、相互接続全体を通じてループインダクタンスができるだけ低くなるようにする必要があります。 記事を読む