Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
PCB設計者
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
PCB設計者
PCB設計者
PCB設計者のためのリソースと情報をご覧ください。
Learn How Altium Supports PCB Designers
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェアエンジニア
ソフトウェア
Develop
Agile
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
Configurable Workflows
GovCloud
Jira Integration
MCAD CoDesigner
Octopart
Requirements Portal
SiliconExpert
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
EMEA
APAC
Americas
ANZ
プリントエレクトロニクス:過去と未来の技術
1 min
Blog
PCB設計者
電気技術者
機械エンジニア
プリントエレクトロニクス(PE)は、新しく急速に成長している相互接続ビジネスです。その起源は、家電製品用のプリントフレキシブルキーボードや、派手な雑誌や文献での技術の拡大にあります。PEの皮肉な点は、この技術が恐らく第二次世界大戦中に最初に使用され、すべてのプリント回路がその起源をPEに負っていることです。 アプリケーション PEについて最もエキサイティングなことは、それが開く新しいアプリケーションと市場の全てです。図1には、現在PE開発者によって追求されている市場のうちの10つが示されています。これらの市場の大多数において、アプリケーションは短命であり、実際のPE基板は使い捨て可能です。フレキシブルキーボード、プリントグルコースセンサー、プリントRFIDタグなど、いくつかのアプリケーションは既に確立されています。一方で、プリントバッテリーと電気泳動電解質で動く化粧品用しわクリームマスクなど、このリストにさえ載っていないものもあります。 材料 材料はPE開発者にとって依然として主要な課題です。多くのPEアプリケーションがコストに敏感であるため、現在の銀の導電性インクやポリイミドフィルムの絶縁体は、そのアプリケーションにとって高すぎます。現在の絶縁体候補は表1に、導体は表2に示されています。 研究では、基板としてのナノテクノロジーがガラス、プラスチック化紙、PET、導体としては銅、グラファイト/グラフェン、カーボンナノチューブ(CNT)を支持しているようです。 表2: 印刷エレクトロニクスに適した導電材料とインク 製造プロセス 印刷エレクトロニクスは、雑誌のような低コスト印刷を想起させます。その技術は、私たちの最も古く、最も自動化された技術の一つです。しかし、図2に示されている他の印刷技術もあります。 インクの印刷方法は、その解像度(マイクロン単位)と秒速平方メートルでのスループットの機能として特徴づけられます。 印刷に関するより詳細な表は表3に示されています。それは速度、解像度、フィルムの厚さ(マイクロン単位)、および使用できるインクの粘度をリストしています。 設計ツール Altium Designer
®
19にアップグレードした場合、プリントエレクトロニクスの設計が可能であることに気付いたかもしれません。これは幸運なことです。なぜなら、多くのアイデアや革新的な電子機器がプリントエレクトロニクスの基板の形を取る可能性があるからです。3Dプリンティングは現在、銀ペーストや様々な絶縁体、抵抗性および容量性インクを使用してプリントエレクトロニクスを作成することができます。近い将来、半導体(P型およびN型)インクやOLEDペーストも利用可能になるでしょう。技術がより一般的になるにつれて、他の特殊インクや紙に似た改良された基板も開発されるでしょう。 プリントエレクトロニクスに関する包括的で詳細な説明については、Joseph Fjelstadの電子書籍「Flexible Circuit Technology-Fourth
記事を読む
Altium Designerで作成されたボードのインピーダンス制御ルーティング
1 min
Blog
PCB設計者
Altium Designerの3Dフィールドソルバーは、インピーダンス制御ルーティングを簡単に行えるようにし、システムのための設計ルールを作成することができます。
記事を読む
統合ツールがマルチボードPCBシステム設計を容易にする方法
1 min
Blog
PCB設計者
電気技術者
システムエンジニア/アーキテクト
コンピューターを分解したことがあるなら、システム全体が単一のPCBに収まるわけではないことを知っているでしょう。さまざまなアプリケーションで使用される最も複雑なデバイスはマルチボードシステムであり、これらのシステムを設計するには想像力、計画、そして適切な設計ソフトウェアが必要です。 リジッドフレックスPCBは、マルチ回路ボードシステムの別のタイプに過ぎず、ボードの各部分を設計する際の同じ設計コンセプトが、それらを接続するフレックスリボンにも適用されます。すべてのマルチボードシステムがリジッドフレックスシステムである必要はありませんが、設計ソフトウェア内でボード間の接続を設計する必要があります。統合設計環境で最高の設計ツールを使用すれば、どのタイプのマルチボードシステムも簡単に設計できます。 マルチボード設計における機能ブロック マルチボードPCB設計を最初に作成するときは、スキーマティックを構築する前に、システムの30,000フィートビューから始めるのが最善です。マルチボードシステムは、単一のシステムにさまざまな機能を組み込みます。システムのブロック図を作成すると、システム内の異なる機能がどのように機能ブロックに分けられるかがより簡単に見えます。 ブロック図で機能ブロックが分離されているように、マルチ回路基板システムでは異なる機能ブロックを異なる基板に分けることができます。コンピュータの動作を考えると、表示、メモリ、ネットワーク接続、その他必要に応じた機能用の異なるカードがあります。 機能ブロックに基づいて異なる基板に機能を分離することは、各基板の適切なレイヤー数を決定するのにも役立ちます。すべてを一つの基板に組み込む場合、システム全体で最大レイヤー数をデフォルトにする必要があります。代わりに、基板が分離されている場合、異なるブロックでレイヤー数を少なくすることができ、全体の製造コストを下げることができます。システム内の一部の基板では、高レイヤー数の多層基板に HDIデザインが必要になる場合がありますが、他の基板は単純な4層基板で十分に機能します。 パッケージ仕様は、マルチボードシステム設計における各基板のサイズと形状を制限します。パッケージが何らかの方法で曲がる必要がある場合は、複数の基板を接続するためにフレックスリボンを使用する必要があります。それ以外の場合は、銅線を使用した標準的なコネクタとケーブルでシステム内の基板を接続できます。 3D設計ツールは、優れたマルチボードシステムを構築するのに役立ちます 痛みの原因を知る PCB設計ソフトウェアがIC設計など他の領域ではなく、マルチボードPCB設計に実際に焦点を当てている場合、マルチ回路基板および リジッドフレックスシステムを設計するための専門ツールが含まれます。これには、単一のプロジェクト内でシステム内の各ボードの構造をカスタマイズできるスタックアップマネージャーが必要です。ほとんどの設計プログラムでは、複数の設計プロジェクト間で前後に切り替える必要があり、これにより重要なシミュレーション、分析、および検証機能が実質的に無用になります。 マルチボードシステムの設計をリジッドフレックスボードとして作成することにした場合、レイヤースタックアップマネージャーは、フレックスリボンをPCBの別のセクションとして、固体銅層またはクロスハッチ銅として、電力、グラウンド、および信号を簡単にリンクできるようにする必要があります。これはすべて、単一のプロジェクトおよび単一のプログラム内で行われる必要があります。これにより、設計機能が視覚化、分析、およびルールチェックツールと直接統合されることを保証します。 デザインの検証は、要求に応じて設計ルールに対するチェック以上のものです。複数の回路基板やリジッドフレックスシステムを扱う場合、潜在的な信号問題を診断するための統合シミュレーションと、フォームファクターを検証するための3Dビジュアライゼーション機能が必要です。他のPCB設計プラットフォームでは、これらの機能をアドオンとして購入する必要があり、これらのアドオンは単一のプログラムに直接統合されません。依然として設計モジュール間を移動する必要があり、これは生産性を低下させ、データエラーの大きなリスクを生み出します。 最高のマルチボード設計ツール マルチボードおよびリジッドフレックスシステムを扱うには、ボードが単一のシステムにどのように同期するかのアイデアを得ることができる3D設計およびビジュアライゼーションツールが必要です。機械設計チームと電気設計チームは、各エリアの設計プログラムが統合されていなかったために、互いに孤立していました。 MCADとECADの機能を単一のプログラムで統合するソフトウェアを使用すると、各領域の設計者が協力して、デバイス全体に最適なボードサイズ、配置、および機能性を決定でき、全体的な設計プロセスを合理化できます。 本格的なMCAD/ECADコラボレーションにより、PCBデザイナーは機械設計者やDFMエンジニアと協力して、3Dモデル内で基板を分析することができます。これにより、製造ラインを離れる前に衝突を防ぐことが容易になります。設計チーム間でファイルが受け渡される反復的な設計プロセスを使用する必要はありません。代わりに、製品の3Dモデルを.STEPファイルで組織全体で共有でき、設計プロセスに関わる全員が単一のプログラムで設計作業を行うことができます。 階層的な回路図で設計をサポートするPCB設計ソフトウェアを使用すると、マルチボード設計がはるかに簡単になります。デバイスを異なる機能ブロックに分割する際、各ブロックに独自の回路図を割り当て、ブロック図のように簡単に回路図をリンクさせることができます。それから、設計の各部分を異なるPCB上でキャプチャし、マルチボードシステム設計が実際に形になるのを見ることができます。 フレックスリボンを使用して基板間の接続を構築することにした場合、リジッド領域とフレックス領域を定義し、フレックスリボンがリジッドセクションの内部層にどのようにリンクするかを定義できるレイヤースタックアップマネージャーが必要です。CADツールは、2Dおよび3Dでボードの配置を簡単に視覚化できるようにする必要があり、ルーティングツールはフレックスリボンを介して相互接続を非常に簡単にルーティングできるようにする必要があります。
記事を読む
マイクロビア製造プロセスとHDI基板
1 min
Blog
PCB設計者
初期のHDI製造 高密度相互接続プリント基板に関する取り組みが始まったのは、研究者たちがビアサイズの縮小方法を調べ始めた1980年のことです。最初に革新を起こした人物の名前は分かりませんが、初期のパイオニアには、MicroPak LaboratoriesのLarry Burgess氏(LaserViaの開発者)、TektronixのCharles Bauer博士(光誘電ビアの開発者)[1]、ContravesのWalter Schmidt博士(プラズマエッチングビアの開発者)などがいます。 初の製品版のビルドアップ基板(シーケンシャルプリント基板)は、1984年のHewlett-Packardによるレーザードリル加工FINSTRATEコンピューター基板です。1991年には、日本のIBM野洲によるSurface Laminar Circuit(SLC)[2]とスイスのDyconexによるDYCOstrate [3]が続きました。図1は、初のHewlett Packard FINSTRATE基板を表紙に載せた Hewlett-Packard Journal(1983年)です。 HPのFinstrateレーザービア レーザードリル加工のマイクロビアは、HPが意図的に開発したのものではなく、新製品の32ビットマイコンチップをリバースエンジニアリングした結果としてもたらされました。「FOCUS」と呼ばれたこのチップは、NMOS-IIIで開発された32ビットのマイクロプロセッサーで、極めて大きい電流を消費するという特性を持っていました。当初意外に思われたのは、この新しいマイクロプロセッサーが、1.6mm厚の基板にある標準0.3mm径のスルーホールビアのインダクタンスをドライブできないという点です。ドライブできたのは、20~30ナノヘンリーのインダクタンスか0.125mmのブラインドビアのみでした。次の驚きは、FR-4の通常損失(Dj=0.020)をドライブするエネルギーがないことでした。そのため、純粋なポリテトラフルオロエチレン(PTFE)が使用されました。ICの冷却要件によって、極小のブラインドビアと非常に低損失の絶縁体を備えたメタルコア基板が必要とされていたため、ダイレクトワイヤボンド集積回路(IC)を備えた銅コアのビルドアップ基板が作成されました。 図1. 一般生産された最初のマイクロビア。1984 年に生産を開始したHewlett Packard
記事を読む
高速・高周波PCBにおける終端方法
1 min
Blog
PCB設計者
高速デジタルシステムを扱う際には、終端の話題が必ず出てきます。ほとんどのデジタルシステムには、少なくとも1つの標準化された高速インターフェースがあり、または高速なエッジレート信号を生成する高速GPIOが存在する可能性があります。高度なシステムには、通常、半導体ダイ上に適用される終端を持つ多くの標準化されたインターフェースがあります。実際に終端が必要かどうかを判断した場合、どの方法を使用すべきでしょうか? 実際には、多くのデジタルシステムではデジタル通信のための標準化されたバスを多くのコンポーネントが実装しているため、離散終端器の適用は非常に一般的ではありません。しかし、高速I/Oを持つ高度なコンポーネントを扱っている場合、離散コンポーネントで手動で終端を適用する必要があるかもしれません。このような状況が発生するもう一つの例は、特定のプロセッサーや FPGAで時々使用される特殊なロジックです。最後に、RF終端の問題がありますが、これはデジタルシステムの終端とは非常に異なります。 終端の適用時期と方法 上述のように、離散コンポーネントで手動で終端を適用する必要があるケースは限られています。 あなたのインターフェースにはインピーダンス仕様がありません データシートには、手動での終端が必要であると記載されています インターフェース仕様では、特定の終端(例: DDR、 イーサネットのボブ・スミス終端)が要求されます RFとデジタルのインピーダンスマッチングはやや異なります。全体的な目標は同じです:伝送線に送信された信号は、伝播中に最小限の損失を経験し、受信コンポーネントによって正しい電圧/電力レベルで登録されるべきです。以下の表は、デジタルとRFで使用される終端方法を比較しています: デジタルチャネル RFチャネル 終端帯域幅 広帯域終端回路が必要 狭帯域終端回路が必要 電力損失 特定の場合にはある程度の電力損失が許容される 通過帯域での電力損失はないことが望ましい 適用範囲
記事を読む
Altium DesignerでPCBガーバーファイルを作成する手順
1 min
Blog
PCB設計者
CAMジョブに最適なアプローチをお探しですか?Altium Designerを使用して、回路基板レイアウトからPCB Gerberファイルを作成する方法を学びましょう。AltiumのCAMツールを使用すると、迅速にPCB Gerberファイルを作成できます。
記事を読む
PCB設計:アスペクト比とは何か、そしてなぜ重要なのか?
1 min
Blog
PCB設計者
製造技術者
電気技術者
PCB内のビアのアスペクト比は、その信頼性を決定する重要なパラメータであり、場合によってはその電気的性能にも影響します。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
34
ページ
35
ページ
36
現在のページ
37
ページ
38
ページ
39
Next page
››
Last page
Last »