製造

リソースライブラリでは、PCB設計とプリント基板製造の詳細を紹介しています。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
PCB組立(PCBA)およびサプライチェーン管理 プロトタイプPCBアセンブリ(PCBA)のリスクを取り除く 1 min Blog Rev Aの設計を磨き上げ、初めてのPCBを基板製造業者に発注するときに感じる特別な感覚があります。デザイナーたちはおそらくその感覚と引き換えに何も望まないでしょうが、不安を少しでも和らげることができれば、それは歓迎される変化になるでしょう。ここには、仕事後のバーへの訪問よりも神経を落ち着かせるのに効果的であり、エラーを防ぐのに無限に効果的なレビューステップがあります。 製造とPCB組立(PCBA)サービスを発注する準備ができたときに、ターンアラウンドタイムを短縮するためにできることがいくつかあります。サプライチェーンに入り、DFM/DFAを早期に確実にすることが重要であり、開発中にこれらの点を真剣に受け止めることで、設計レビュータイムと組立/製造時間を短縮できます。これらの点に注意を払うことで、PCBAの不必要な再設計もいくつか排除できます。 部品がなければ、基板もなし。 かつて時折イライラする忍耐と計画の教訓であったサプライチェーン管理は、プロトタイプレベルでも重要な設計パラメーターとなっています。数百万ドルの開発プロジェクトが、たった10個の微細なマイクロコントローラーが見つからずに1週間遅れることほど悪いことはありません。これらのマイクロコントローラーの価値は1つ2ドルに過ぎません。 PCBA用の一般的な受動部品、ダイオード/LED、または一般的なICは、交換が容易であり、おそらく大きなPCBレイアウトの変更を必要としないでしょう。利用できないマイクロコントローラー、FPGA、特殊SoC、その他の特殊コンポーネントのようなものは、PCBAのほぼ全面的な再設計を強いる可能性があります。製造のために注文を出す前に、早期にコンポーネントの入手可能性とリードタイムを常に確認するべきです。 設計ツールの検索機能は、ここで大きな役割を果たし、PCBを製造する前に、調達データやコンポーネントのシンボル/フットプリントを見つけるのに役立ちます。 これを軽減する最良の方法は、回路図が完成したらすぐにすべての部品のプロトタイプ数量を注文することです。確かに、誰もが不足時にスマウグが「一枚のコイン」でさえ手放すことを拒むように部品の山を欲しがる収集家になりたいとは思いませんが、私たちが話しているのはほんの一握りの部品です。ボードが組み立てられる時点で設計から外された部品の4分の1を無駄にする失望は、ファームウェアエンジニアがハードウェアがないときに時間を無駄にすることを知ることと比べものになりません。迅速なメモ:各部品の MSL(湿度感受性レベル)の評価を確認することも重要です。契約メーカーは、SMTリフローのためにボードに部品を配置する前に部品を焼く必要があるかもしれません。 供給チェーンを早期に見ることで、PCB組立(PCBA)の生産時間を短縮します。 デザインレビューは楽しい! ほとんどのエンジニアは、 デザインレビューについて2つのことを認識しています:それらはRev Aリリースに必要であり、レビューを完了することは、同僚に大きなお願いをすることができます。しかし、レビュアーにとって余分な苦労を伴う必要はありません。何事も、お金と競争を加えることでより楽しいものにすることができます!例えば、デザイナーは見つかったミスに対してレビュアーに支払う必要があるかもしれません。ボードのリビジョンを引き起こす可能性がある重大なミスについては1つにつき20ドル、重大でないミスについては2ドルが妥当でしょう。デザイナーが残ったものを保持できるように、会社に200ドルの予算を出してもらい、デザインの卓越性を奨励し、健全な競争を促進することもできます。 設計レビューチェックリストを完了させるには、 サードパーティプログラムでガーバーファイルを確認することが欠かせません。これは、基板製造業者がファイルを検査するのと同等の作業です。99.99%のエラーは設計および/または構成のエラーですが、すべてのeCADパッケージが何らかのエラーを出したことがあるため、5分間のチェックは価値があります。例えば、 GerbVは無料のオープンソースツールで、設計者が各レイヤーを個別に、そして一緒に、設計エラーやCAM出力エラーから生じる可能性のある不審な点を確認することを可能にします。 ペーパードール PCBA設計の究極の目標がコンピュータから離れて実世界で何かを構築することであることを思い出して、機械的な部分をダブルチェックする簡単で迅速な方法があります:ペーパードールです!Tara Dunnが 記事を読む
設計を正しく進めるためのBOM管理 1 min Blog Active BOMがあれば、憶測に頼らずにコンポーネントを選択して、最初から正しい設計を進めることができます。 Altium Designer すべての製造段階で作業をスムーズに進めるためのPCB設計ツール コンポーネントに対するフィードバックをもらわないと、作業を開始できないことにうんざりしていませんか?コンポーネントについての誤った情報や古いデータが原因で、予算に響く土壇場の変更が発生することに疲れていませんか?こうした問題に思い当たりがあるのなら、スケジュールに狂いが出ることに大きな不満を抱えていらっしゃることでしょう。回路図にコンポーネントを配置しながら、リアルタイムの部品情報をサプライヤーから直接入手できるとすればどうでしょう?回路図の作成中に、設計で使用するすべてのコンポーネントの詳細リストがあれば便利だと思いませんか? これらはすでに実現しています。PCB設計ツールからコンポーネントの詳細な最新情報を入手できるのは、Altium DesignerのActive BOMがもたらす利点の1つにすぎません。BOM管理では、入手できる必要な情報がソフトウェアでリアルタイムに更新されるため、購買管理、請求管理、製品(開発)管理、製品ライフサイクル管理がはるかに容易になります。 Active BOM: 設計データで機能するもうひとつのポータル Active BOMは、Altium Designerに含まれる最新ツールの1つです。回路図エディタやPCBレイアウト アプリケーションとともに、設計データでポータルとして機能するこのツールでは、コンポーネントの完全な詳細リストを表示して、含まれるデータを設計で直接使用できます。回路図とレイアウトの両方でコンポーネントを横断選択できるため、設計中だけでなく設計の見直しにも大いに役立ちます。 Active BOMでは部品サプライヤーとのクラウド接続を通じて、部品の最新の価格や在庫状況、技術データを入手できます。これらの機能のほかにも、部品表レポートを直接作成することが可能です。こうした部品管理が生産性の向上にいかに役立つかがわかったら、もうActive BOMを手放せなくなるでしょう。 設計システム全体で活用できるActive 記事を読む
電子機器のためのバーンインテストとは何ですか? 電子機器のバーンインテストとは何ですか? 1 min Thought Leadership 新しい基板の製造を計画する際には、おそらく新製品に対するさまざまなテストを計画することになるでしょう。これらのテストは、しばしば機能性に焦点を当て、高速/高周波基板の場合は信号/電力の整合性に焦点を当てることが多いです。ただし、製品を極端な期間にわたって動作させることを意図している場合、製品の寿命の下限を信頼性を持って設定するためのデータが必要になります。 インシリキットテスト、機能テスト、および可能な限り機械テストに加えて、部品や基板自体もバーンインテストの恩恵を受けることができます。大量生産を計画している場合、これは大量生産に移る前に行うのが最適です。 バーンインテストとは? バーンインテスト中、特別なバーンイン回路基板上のコンポーネントは、コンポーネントの定格動作条件以上でストレスをかけられ、コンポーネントの定格寿命前に早期に故障する可能性があるアセンブリを排除するために行われます。これらのさまざまな動作条件には、温度、電圧/電流、動作周波数、または上限として指定されたその他の動作条件が含まれます。これらの種類のストレステストは、加速寿命試験(HALT/HASSのサブセット)と呼ばれることがあります。これは、コンポーネントの動作を長期間および/または極端な条件下で模倣するものです。 これらの信頼性テストの目標は、バスタブ曲線(以下に例が示されています)を形成するための十分なデータを収集することです。残念ながら名前のついた「初期故障」部分は、製造上の欠陥による早期のコンポーネントの故障を含みます。これらのテストは通常、高信頼性半導体の上限である125°Cで実施されます。製品の信頼性を完全に把握するために、さまざまな温度で電気的に動作させることができます。 プロトタイプ基板でのバーンインテストおよび環境ストレステストは、意図された基板材料の ガラス転移温度以上の125°Cで実施することができます。これにより、基板の機械的応力による故障に関する極端なデータと、部品の故障に関するデータが得られます。バーンインテストには、次の2種類のテストが含まれます: 静的テスト 静的バーンインは、入力信号を適用せずに各コンポーネントに極端な温度と/または電圧を単純に適用するものです。これは単純で低コストな加速寿命試験です。プローブは単に環境チャンバーに挿入され、チャンバーは温度に達し、デバイスは所望の適用電圧に達します。このタイプのテストは、極端な温度での保管を模倣するための熱試験として最適です。テスト中に静的電圧を適用すると、デバイス内のすべてのノードがアクティブにならないため、コンポーネントの信頼性の包括的な視点を提供しません。 動的テスト このタイプのテストでは、バーンインボードが極端な温度と電圧にさらされながら、各コンポーネントに入力信号が適用されます。これにより、IC内の内部回路が信頼性の観点で評価されるため、コンポーネントの信頼性の包括的な視点が提供されます。動的テスト中に出力を監視することで、基板上のどのポイントが最も故障しやすいかをある程度把握することができます。 どんなバーンインテストでも、故障が発生した場合は徹底的な検査が必要です。特にプロトタイプボードのストレステストではこれが特に重要です。これらのテストは時間と材料の面で時間がかかり、費用がかかることがありますが、製品の有用寿命を最大限に引き出し、 設計の選択肢を適格化するために重要です。これらのテストはインシリキットテストや機能テストをはるかに超え、新製品を限界までストレスをかけます。 ボードレベル対コンポーネントレベルの信頼性テスト バーンインテストは通常、プロトタイプボードのストレステストを指すものではありません。これは通常、HALT/HASSと呼ばれます。バーンインテストは、他の環境/ストレステストと併せて、基板レベルおよび コンポーネントレベルの障害を明らかにすることができます。これらのテストは、仕様どおりに行うことも、指定された動作条件を超えて行うこともできます。 一部の基板設計者は、コンポーネントの仕様を超えたストレステストや基板/コンポーネントの意図しない動作条件でのテスト結果を受け入れることに躊躇するかもしれません。その理由は、基板やコンポーネントが意図された環境で展開される際には決してそのような動作条件にはならないため、テスト結果は無効であると考えられるからです。しかし、これは仕様を超えたバーンインテストやストレステストの本質を見逃してしまっています。 これらのテストを仕様を超えて実行することで、より多くの故障箇所を特定できます。連続して複数のテストを実行することで、これらの故障箇所が時間とともにどのように発生するかを確認し、信頼性のより良い視点を得ることができます。仕様を超えて実行することは、製品の寿命をより大きく加速させ、浴槽曲線のより深い視点を提供します。 もし過剰な仕様のテスト中に特定された不良ポイントに対処できれば、完成した基板の寿命を大幅に延ばすことができます。設計ソフトウェアでサプライチェーンデータにアクセスできれば、より長い寿命を持つ適切な代替部品に簡単に切り替えることができます。これらの手順はすべて、完成品の寿命を延ばすために大いに役立ちます。 製造業者からのバーンインテストの結果を受け取り、設計変更を計画している場合、 記事を読む
PCBテストクーポンの設計方法とテストできる内容 PCBテストクーポンの設計方法とテストできる内容 1 min Thought Leadership コンポーネントの動作速度が上がるにつれて、デジタル、アナログ、混合信号システムにおいて制御インピーダンスが一般的になってきています。インターコネクトの制御インピーダンス値が正しくない場合、インサーキットテスト中にこの問題を特定するのが非常に難しくなります。わずかな不一致がボードの故障を引き起こさない場合がありますが、テスト失敗の原因として不正確なインピーダンスを特定するのは難しい場合があります。特に、ベアボードインピーダンステストを容易にするために、正しいテストポイントやテスト構造がボードに配置されていない場合はそうです。 インピーダンスは多くのパラメータ(トレースの形状、ラミネートの厚さ、ラミネートのDk値)に依存するため、現在のところ、大多数のPCBは制御インピーダンスのためにテストされています。ただし、テストは通常、PCBと同じパネル上で製造されたPCBテストクーポンで実施されます(通常は端に沿って)。ボードスピンを迅速に進め、将来の設計を支援したい場合は、テストクーポンを設計して手元に置いておくことを検討すると良いでしょう。さらに、提案するインターコネクトのジオメトリに関する十分なドキュメントを製造業者に提供することは、製造業者が正しいテストクーポンを作成することを確実にするのに大いに役立ちます。 分離型または統合型PCBテストクーポン? テストクーポンの目標は、ボードの意図されたスタックアップを正確に捉え、正確なインターコネクトインピーダンステストを容易にすることです。これを行う方法はいくつかあります。制御インピーダンス用のテストクーポンでは、製造業者がパネルの端に少しスペースを残して、制御インピーダンステストのためのテスト構造を配置することがあります。テストクーポンは、ベンダーライブラリから選択されたり、業界標準(例えば、 IPC 2221B Appendix AのDクーポン)、またはいくつかのソフトウェアを使用して生成されたりすることもあります(例えば、 IPC 2221B Gerber Coupon Generator)。 時には、テストクーポンが実際のPCBに統合され、同じパネル上で別のセクションとして作成されるのではなく、実際のPCBに統合されることがあります。この場合、テストクーポンは、生成されたものやベンダー提供のテストクーポンから期待される典型的な外観を持たないかもしれません。Kella Knackは、 最近の記事で、製造業者であれば別のテストクーポンに、設計者であればプロトタイプボードに直接含めるべき一般的なテスト構造について説明しています。 テスト構造を直接ボード上に配置することは、スペースの無駄のように思えるかもしれませんが、プロトタイピング中はもちろん、大規模生産中でも、インサーキットテストに大いに役立ちます。もし、一般的でないインターコネクトの幾何学構造を設計している場合、大量生産前にインピーダンスを評価する必要があります。インターコネクト設計を含む単一のボードを設計し、社内でテストすることは損ではありません。テストボードに前もって費用がかかりますが、生産前に必要な測定値を得られれば、後でボードを再設計する必要がなくなるかもしれません。 インピーダンスを超えて 相互接続インピーダンス、PDN容量、導体損失、伝搬遅延は、適切なテスト構造を用いればすべて測定できます。カスタム設計されたテストクーポンに配置された他のテスト構造は、基板ラミネートの 誘電率を決定するのに役立ちます。マイクロ波/ミリ波領域に達すると、挿入損失や空洞放射などがテストされるべきで、制御インピーダンス線上のアナログ信号が重大な劣化を経験しないようにする必要があります。 記事を読む
PCBトレースとパッドのクリアランス:低電圧対高電圧 PCBトレースとパッドのクリアランス:低電圧対高電圧 1 min Thought Leadership 高電圧/高電流設計は、設計者が満たす必要がある安全要件を伴います。同様に、高速設計では、信号の整合性を保証するためにクロストークを抑制する必要があります。両方の領域に関連する主要な設計要素は、PCBトレースクリアランスとパッドクリアランスの値です。これらの設計選択は、安全性、ノイズ抑制、および製造可能性のバランスをとるために重要です。 IPC 2221電圧および間隔基準は、導体間のESDを防ぐためのガイダンスを提供しますが、すべてのボードがこの基準を満たす必要はありません。PCBトレース間の距離の電圧と信号の頻度(またはデジタル信号のエッジレート)に応じて、PCBトレースクリアランスに異なる値が必要になる場合があります。製造可能性を確保しながら、PCBクリアランスレイアウトのこれら2つの側面をどのようにバランスさせるかについて説明します。 低電圧 (15 V) IPC 2221電圧および間隔基準によると、一般用途デバイスの最小PCBクリアランスルール(実際には、任意の2つの導体間のクリアランス)は0.1 mmまたは4ミルです。電力変換デバイスの場合、この最小PCBトレース幅および間隔は0.13 mm、または5.1ミルです。これらのボードは「高電圧」とは考えられず、これらのボードの導体間隔はHDI領域に近づき始めます。 これらの電圧では、デジタル信号、低周波アナログ信号、または単に中程度の電流でのDCを扱っている可能性があります。デジタル信号の場合、典型的なルールは「3W」ルールに従うことです。ここで、トレース間のクリアランスはトレースの幅の3倍です。典型的な50オーム制御インピーダンスのマイクロストリップの場合、トレース幅は約20ミルになるため、推奨されるPCBトレース間隔は60ミルです。 IPC 2221の要件内にまだ十分に収まっており、主な焦点は効率的なルーティングとDFMにあるべきです。HDI領域でも、BGAの細かいピッチパッド間をルーティングする必要がある場合でも、一般的に3.3Vまたは約1Vで作業しているため、これらの電圧要件を心配する必要はありません。 高電圧(>15 V) 高DC電圧では、PCBトレースのクリアランス値を選択する際の主な懸念事項は、露出した導体間でのESD(静電気放電)と樹枝状成長を防ぐことです。高AC電圧の場合、または高電流を出力するスイッチングレギュレータを使用する場合、ESDと樹枝状成長だけでなく、クロストークについても心配する必要があります。クロストーク抑制ガイドラインは、非常に高い電圧になるまで、導体間の必要なPCB電圧クリアランスまたは間隔を過剰に規定しています。 IPC 2221とクロストーク抑制のバランスをどのように見つける必要があるかを考えるために、次の仮定の状況を考えてみましょう。制御インピーダンスのマイクロストリップ(幅20ミル)が、高電圧ACラインの近く、または高電流DCレギュレータの出入りするトレースの近くにあるとします。"3W"ルールに従うと、平行なマイクロストリップ間および近くの高電圧ラインとの間隔は1.5 mm、または約60ミルであるべきです。これは、高電圧レベルが電力変換デバイスの場合は180V、その他の高電圧製品の場合は340Vに達するまで、IPC 2221に十分適合するものです。 記事を読む
インダストリー4.0の人工知能アプリケーション 産業4.0、人工知能、製造業におけるIoT 1 min Blog エレクトロニクスに関して言えば、スマートフォンやAlexaのような消費者向けデバイスがすべての注目を集めがちです。しかし、 Ventec International GroupのAlun Morganによると、「世界で生産されるPCBの約23%が製造アプリケーションの電子機器に使用されています。」自動車、通信、電力生成/配布、およびコンピューティングなど、製造業務をサポートする他の非消費者向けカテゴリーを含めると、この数字はさらに上昇します。西洋の製造業者は、工場の床でのより大きな自動化と生産性を通じてのみ、オンショア化が実現すると広く受け入れています。これがインダストリー4.0の本質であり、工場の運営がこれまで以上にインテリジェントで、よりつながっています。 では、製造業者はオンショア化を通じてどのようにしてさらに費用を削減し、生産性の利点を見出すことができるのでしょうか?この質問には、3Dプリンティングのような先進的な製造技術を考慮すると、いくつかの答えがあります。皆が同意する一つのことは、多くの製品の製造業務は近い将来さらにデジタル化されるということです。このレベルのデジタル化には、機器を動かしデータを収集するためのPCBと、迅速にデータを処理し有用な洞察を得るための技術が必要です。インダストリー4.0では、人工知能(AI)が運営の管理とデータの処理に不可欠であり、最終的にはマネージャーやエンジニアに洞察を提供します。 インダストリー4.0とAIのための設計 製造業務をサポートする新しいAIシステムを設計することは、ソフトウェアに関することだけでなく、ハードウェアの取り組みでもあります。両方の領域は互いに補完し合います。組み込みボードは組み込みソフトウェアをサポートするように設計されなければならず、組み込みソフトウェアはボード上の他の機能を制限するほどリソースを消費してはなりません。これは、すべての製造資産とデータ取得/処理をサポートするシステムが組み込みIoTエコシステムになり、データは中央の場所またはクラウドで処理されることを意味します。 インダストリー4.0では、より多くの製造資産が接続されるにつれて、製造業者はこれまで以上に大量のデータを生成することが期待されます。この接続性は、IPC-CFX標準のような新しい業界標準のデータ交換を通じて可能になります。任意の製造操作がその資産を接続し、あらゆる製造プロセスを通じてデータを集約したい場合、工場全体にわたって多数の組み込みIoTデバイスが必要になります。 インダストリー4.0のための組み込みIoT設計要件 新しい組み込みIoTデバイスは、いくつかの基本的なハードウェア要件を満たしていれば、AIアプリケーションをサポートできます。これらの組み込みデバイスは、標準的なAI/MLモデルをサポートしつつ、標準プロトコルを介してデータの通信を可能にする特殊なシングルボードコンピュータです。ここでは、インダストリー4.0の製造業務のための新しいシステムを設計する際に考慮すべきいくつかの基本的な要件を紹介します: 処理能力:これはクロック速度についてではなく、並列処理についての話です。より多くのコア/プロセッサを持つシステムやクラスタリングが可能なシステムでは、データをより速く処理し、AIモデルで使用できます。 オンボードメモリ:必要なメモリ量は特定のアプリケーションに依存します。画像処理のためのシステムは、数値データ処理のためのシステムよりも多くのメモリを必要とします。 他のセンサーとのインターフェース:データは、環境センサーから、製造装置内のセンサーから、または その他のさまざまなセンサーから直接取得する必要があるかもしれません。 通信能力:これは必要な通信範囲に基づいて選択する必要があります。長距離通信にはNB-IoT、LoRaWAN、LTE-Mなどの無線プロトコルを使用できますが、短距離通信にはBluetooth LE、WiFi、Ethernetが一般的です。 産業4.0 AIシステムのためのモジュラーデザイン コスト削減と生産性向上は、新しいシステムを迅速に展開し、設定することについてです。ほとんどの製造技術者はプリント回路設計者ではありませんが、この重要なクラスのエンジニアは、 記事を読む