クラス最高のインタラクティブ配線

どんなに複雑なプロジェクトでも手動による配線時間を短縮できます。

Filter
Clear
Tags by Type
Software
自動インタラクティブルーターの配線がオートルーターより整然としている理由 Thought Leadership 自動インタラクティブルーターの配線がオートルーターより整然としている理由 少年の頃、私の部屋は常に散らかっていました。あらゆるものがどこにあるかわかっていると思っていたので、掃除する理由はありませんでした。最終的には、両親と友人からの強いプレッシャーに屈し、私は部屋を掃除しました。違いは驚くべきものでした。足の踏み場ができて、はるかに歩き回りやすくなりました。 オートルーターによるPCB配線についても同じことが言えます。オートルーターの配線は、 見た目が悪く雑然とする ことが知られています。そのような基板は、場合によっては追加設計が難しく、またいいかげんな設計に見える可能性もあります。こういった望ましくない配線は、通常次の3タイプのいずれかに分類されます。 1) バス配線の分割 2) 長く曲がりくねった配線 3) 望ましくないコーナーやスタブがある配線 何年もの間、PCB設計者は、オートルーターのスピードを必要とするたびに、配線に関するこれらの問題に対応してきました。自動インタラクティブルーターは、代替ルーターとしてはあまり知られていませんが、オートルーターに付き物の配線の問題はなく時間を節約することができます。 均一なバス配線 オートルーターは、PCBの配線時に多くの問題を引き起こす可能性があります。最初に目を引く問題は、バス配線の分割です。 バス配線は、類似するネットをグループ化した、均一な配線パターンです。例えば、8ネットのデータバス(D0からD7)はできる限りすき間なく配線する必要があります。このような配線は、トレースの長さとトポロジーを一致させることで、データバスの信号特性を維持します。 オートルーターは、バスをグループとして配線せず、バス内のネットを別々のものとして認識します。各ネットを配線するため、オートルーターは、そのバス配線から他のネットの配線を押しのけます(push & shove)。全てのネットの配線が完了したときには、オートルーターは、均一なバスを完全に分割しています。 これに対して、 自動インタラクティブルーター は、デザイン内の全てのネットではなく、ユーザーが選択したネットを操作します。また、パターン幅、クリアランス、レイヤー、およびトポロジ―についてユーザーが設定したネットおよびネットクラスのデザインルールに従います。その結果、整然として緻密なパターンのバス配線になります。さらに、自動インタラクティブルーターでは、オートルーターが配線方向を決定するのとは異なり、ユーザーがバス配線の経路を指定します。
PCB設計における自動インタラクティブ配線とPCBオートルーターは何が違うのか Thought Leadership PCB設計における自動インタラクティブ配線とPCBオートルーターは何が違うのか 編集クレジット: Santiparp Wattanaporn / Shutterstock.com しばらく前、私は第二次世界大戦時代に戦闘機パイロットが訓練に使っていたAT-6に乗って、空を飛べる機会をいただきました。飛行機の大ファンである私にとって、これほど素晴らしいプレゼントはありません。飛行体験までの5か月間は、大きな期待に胸を膨らませていました。そして、当日。それまでに感じたことがないほどの喜びをかみしめながら、いよいよ真っ青な空に向かって離陸です。パイロットは緩横転を披露してくれました。ところが、トップガンに対する私の期待は粉々に崩壊しました。それからのフライトは、飛行機酔いのための袋に顔をうずめて過ごすことになったのです。自分の身体が高速のアクロバット飛行に耐えられないのだとわかったとき、本当にがっかりしました。 それは、PCB設計で初めてオートルーターを使ったときの落胆と同じ気分でした。というのも、オートルーターは私と同じ程度の能力で配線に対応してくれると期待していたのですが、残念ながら、配線後の設計はとんでもないことになっていました。配線自体は完了していたものの、体裁を整えるのに数時間や数日という長い時間がかかりそうなクリーンアップを手動で行う必要があったのです。 ところが、最近では自動インタラクティブ配線技術のおかげで、設計者は自動配線を活用できるようになっています。自動インタラクティブ配線は自動配線とは異なるだけでなく、多くの点で自動配線よりも優れています。自動インタラクティブ配線の利点についてお話しする前に、まずはオートルーターと自動インタラクティブルーターの基本的な違いを確認しておきましょう。 自動インタラクティブルーターとPCBオートルーターの違いとは? この2つのルーターは似ているようもののように思えますが、実際にはまったく違うものです。もちろん、どちらも配線エンジンですが、オートルーターではすべての配線が行われる一方で、自動インタラクティブルーターでは設計者が配線をコントロールできます。 オートルーターはスタンドアロンのアプリケーションとして長い間利用されてきました。現在ではPCBレイアウトソフトウェアと連動するようになっているものの、実行するには独自のデザインルールが必要です。これらのルールは手動で設定することも、レイアウトソフトウェアからインポートすることもできます。オートルーターを実行すると、設計に含まれるすべての有効なネットで配線が試みられます。ここでは、さまざまな配線ストラテジで事前に設定された条件を使って、一連の経路で配線が実行されます。完了すると、設計者は自動配線されたトレース情報をレイアウトアプリケーションにインポートし、既存の配線と置き換えます。オートルーターによって配線された使いものになるトレースの分量は、設計者の設定に完全に左右されるものの、結果は思い通りにはならないでしょう。 一方、自動インタラクティブ配線がうまくいくかどうかは、設計者が追加で設定した内容に左右されません。自動インタラクティブルーターはレイアウトアプリケーションに不可欠なため、 既存のデザインルール が使用されます。これらのルールは、一般的な手動の配線で使用されているものです。自動インタラクティブルーター用のコマンドも、レイアウトツールの既存の配線メニューから簡単に使用できます。設計者は自動インタラクティブルーターで配線するネットやネットのグループを選択し、自動インタラクティブルーターを実行するだけです。配線は設計者がコントロールできるため、高速な自動配線を使って基板を手動で配線しているような感覚で作業できます。 オートルーターの設定はかなり複雑になる場合がある 自動インタラクティブ配線と自動配線が異なる理由 オートルーターを正しく機能させるためには、たくさんの設定が必要になります。すべての配線が希望どおりに実行されるためには、オートルーターを仕込んでおかなければなりません。そのためには、オートルーターにデザインルールと配線ストラテジを読み込む必要があります。ネットクラスやトポロジーの制約といったデザインルールは、レイアウトソフトウェアからインポートできるものの、オートルーターで最高の性能を達成するためには微調整が必要です。とはいえ、ここで本当に困難になるのは、さまざまな自動配線のストラテジを設定することです。これらのストラテジでは、トレースの配線方法や配線を断念する前の試行回数を指定します。ここには誤った配線距離や、オートルーターが実行する配線のクリーンアップの試行回数も含まれます。自動配線のストラテジの作成は難しく、オートルーターがさまざまな状況でどのように機能するのか、ということは理解できるくらいの経験が必要になります。 一方、自動インタラクティブルーターでは面倒なストラテジの作成を行わずに、配線経路を指定できます。つまり、設計全体ではなく選択したネットでのみ配線が行われるため、オートルーターのようなストラテジが必要ありません。自動インタラクティブルーターは、配線の対象となるネットやネットのグループを選択すると実行できるのです。ここでは、ルーターによって配線経路が選択されるようにするか、設計者が手動で作成した経路をテンプレートとして使用するかを選択できます。配線経路のテンプレートを作成すると、配線が行われる場所を指定しながら、トレースを配線するという面倒な作業を自動インタラクティブルーターに任せることができます。 自動インタラクティブ配線では、一様な配線パターンの作成が可能 自動インタラクティブ配線では、自動配線されない
ストリップライン対マイクロストリップ: その違いとPCB配線のガイドライン ストリップライン対マイクロストリップ: その違いとPCB配線のガイドライン 筆者は、初めて高速設計技術についての説明を聞いたとき、全く頭に入ってきませんでした。これは、筆者が設計者としてのキャリアを開始したばかりだったので、困惑の原因が経験不足であったことは確かです。ストリップラインおよびマイクロライン配線の概念そのものが全く理解できませんでした。講師が、自分になじみのない全く異なるタイプのPCBについて話していると思いました。幸い、それらがストリップラインやマイクロストリップというPCBではないことを知って、この困惑はすぐに解決しました。そうではなく、ストリップラインおよびマイクロストリップは、PCBに高速の伝送線路を配線する、2つの異なる方法でした。 ストリップラインとマイクロストリップは、場合によっては理解しにくいものです。ですから、設計初心者やこのトピックについての再トレーニングを探している設計者に、この基本レビューは最適です。 ストリップラインおよびマイクロストリップについて ストリップラインおよびマイクロストリップとは ストリップラインおよびマイクロストリップは、PCBに 高速伝送線路を配線する方法です。ストリップラインは、PCBの内層の2つのGNDプレーンに挟まれた、絶縁材で覆われた伝送線路配線です。マイクロストリップ配線は、基板の外層に配線された伝送線路です。このため、絶縁材によって単一GNDプレーンから分離されます。 マイクロストリップは、基板の表面層に伝送線路を配線するため、ストリップラインよりも優れた信号特性を持ちます。1つのプレーンと1つの信号層から成るレイヤ構成で製造プロセスがより単純なため、マイクロストリップは基板の製造コストも節約できます。ストリップラインは、2つのGNDプレーンの間に組み込まれた配線をサポートする複数のレイヤが必要なため、製造がより複雑です。ただし、ストリップラインでコントロールされるインピーダンストレースの幅は、同じ値のマイクロストリップのインピーダンストレースより狭くなります。これは、2つ目のGNDプレーンによります。このようにトレース幅が狭くなると、回路を高密度にできるため、よりコンパクトなデザインが可能になります。ストリップラインの内層配線はEMIも抑え、より確実な危険防止策を提供します。 ストリップラインとマイクロストリップには異なる長所があります。どちらの方法がよいかの判断は、設計ニーズに基づいて行う必要があります。高密度の高速設計では、多くの場合、多層基板で2つの方法を併用して設計目標を達成します。 さらに、高速設計で伝送線路を配線する際、設計全体でコントロールされたインピーダンスを保持することは非常に重要です。伝送線路が配線されたPCBのレイヤー、伝送線路トレースの物理特性、絶縁体の特性は全て、 回路に最適なインピーダンス値を設定するため、一緒に計算する必要があります。インピーダンスの計算に使用するストリップラインおよびマイクロストリップのモデルが異なる、さまざまな インピーダンスカリキュレーターがあります。 PCBの設計において重要なストリップラインおよびマイクロストリップ配線 ストリップライン配線およびマイクロストリップ配線の例 以下に、ストリップラインおよびマイクロストリップの配線技術の例と、それらの特性がインピーダンス計算に及ぼす影響を説明します。 マイクロストリップ。外層に配線された伝送線路がマイクロストリップとみなされます。これらのモデルは、トレースの厚みと幅、および基層の高さと絶縁体の種類に基づきます。 エッジ結合マイクロストリップ。この技術は、差動ペアの配線に使用されます。標準的なマイクロストリップ配線と同じ構造ですが、モデルは、差動ペア用の配線スペースが加わり、より複雑です。 エンベデッドマイクロストリップ。この構造は通常のマイクロストリップと似ていますが、伝送線路の上に別の絶縁体層がある点が異なります。ソルダ―マスクは絶縁体層とみなすことができ、インピーダンス計算で考慮する必要があります。 シンメトリックストリップライン。(2つのGNDプレーンの間の)内層に配線されるストリップラインは、シンメトリックストリップライン、あるいは単に「ストリップライン」配線とみなされます。マイクロストリップと同様に、このモデルは、2つのプレーンの間に組み込まれているトレースに応じて調整された計算により、トレースの厚みと幅、および基層の高さと絶縁体の種類に基づきます。 アシンメトリックストリップライン。シンメトリックストリップラインモデルと似ていますが、このモデルは2つのプレーンの間で厳密には層間の中心にない伝送線路を考慮しています。 エッジ結合ストリップライン。この技術は、内層の差動ペアの配線に使用されます。標準的なストリップラインと同じ構造ですが、モデルは、差動ペア用の配線スペースが加わり、より複雑です。
アナログGNDおよびデジタルGND接続にスターポイントを使用する方法 Thought Leadership アナログGNDおよびデジタルGND接続にスターポイントを使用する方法 私にとってデートで一番難しいのは、そもそも人に会うことです。私は技術者なので、生活の大部分をコンピューターの前で過ごし、いろいろな人と話をすることがありません。それが、デートサイトやデートアプリが素晴らしいアイデアだと思う理由の1つです。他の方法では全く不可能であろうつながりを持つのに役立ちます。他の人と絆を結ぶことは困難ですが、アナログGNDプレーンとデジタルGNDプレーンをリンクするのは、さらに困難です。ノイズが多いデジタルチップは、敏感なアナログ回路に干渉する場合があります。したがって、この2つは離す必要がありますが、一方で同じGNDに参照される必要もあります。プレーンを行き当たりばったりに接続すると、解決できないほど問題が発生する場合があります。そこでスターGNDの出番です。スターGNDでは、デジアナ混在信号回路の異なるGNDを結合できます。 デジアナ混在信号接地の問題 デートと同じように、デジアナ混在信号PCBの接地は、多くの 問題と解決策 があり複雑です。ご存知のように、EMIを減らすには、アナログ信号とデジタル信号を離しておく必要がある一方で、これらは一緒に接地する必要があります。接地が不適切だと、大きなGNDループができて、回路の中やおそらく周囲にノイズが発生します。 デジアナ混在信号基板での主な問題は、デジタル回路です。デジタルスイッチングチップは、ノイズが非常に多いのですが、単独では問題になりません。しかし、アナログ回路と組み合わせると、デジタルEMIはしばしば、 敏感なアナログ信号と混じって しまいます。このような理由で、一般に、 これらの2つのシステムは離しておく べきなのです。 アナログ回路とデジタル回路を離すことで、別の問題が発生します。それは、浮動接地です。アナログチップとデジタルチップは全て、適切に動作するため、 同じGNDに関連付ける 必要があります。別々のアナログGNDプレーンとデジタルGNDプレーンを好きな場所に接続すると、GNDループができます。大きなGNDループは、 アンテナの役目を果たし 、基板の他の部品に、またおそらく デバイスの外に EMIを放射します。スターGNDでは、アナログ回路とデジタル回路を一箇所に接続できます。すると、GNDループやEMI放射の可能性が低くなります。 全てのGND接続はスターGNDで終端する必要があります。 スターGND 多くの人々が、愛について説明しようとして失敗してきました。私はそれほど大胆ではないので、スターGNDの概要を述べるだけにします。
RS485はワイヤレス通信テクノロジーの時代を生き延びられるか RS485はワイヤレス通信テクノロジーの時代を生き延びられるか 私は、携帯電話業界に最近復帰したNokia 3310をこよなく愛しています。この製品を使ったことがないなら、あなたは近年の歴史において最も信頼性と耐久性が高い携帯電話の1つを知らないことになります。2000年初期とは異なり、現在ではくるみ割り器としても使えたり、高所からの落下にも耐えられたりする携帯電話は滅多に見られません。 電子設計において、これと同じような堅牢性と信頼性を持つのが、RS485通信です。Nokiaと同様に、私はRS485をいつまでも使い続けるつもりです。しかし、ワイヤレス通信テクノロジーが日々ますます遍在的になるにつれ、この多くの実績のあるプロトコルも過去の遺物となってしまうのであろうかという考えに駆られることがあります。 RS-485とアプリケーション 私はNokiaを愛していますが、以前に文字にも電話にも応答しない女の子とデートしたことがあります。彼女が会話さえ拒否するようになるまで、私はこれを問題とは思っていませんでした。結局のところ、人間関係も電子回路も、連絡が無ければ正しく機能しないということです。電子機器は多くの場合、互いに数百メートルも離れた場所に、理想的ではない電気的環境で設置されます。このため、電気的な干渉、距離、速度の懸念に信頼性の高い方法で対応できる通信方法が求められます。 干渉 : RS485 は半二重の差動モードでデータを伝送するシリアル通信プロトコルの電気的特性を定義する規格です。差動信号とより線ペアケーブルにより、RS485上で伝送されるデータは1200mまで伝達可能で、信号の干渉に対しても高い耐性があります。 プロセス自動化においては、RS485が今でも主流です 距離 : Nokiaによって解決できなかったもう1つの通信の問題は、欧州へ旅行中に、北米に住んでいるガールフレンドに電話したときのことです。9時間の時差があるため、私が起床して一日の行動を開始する頃、彼女は寝る前ということになり、互いに関係を保つことが困難になりました。もしも私たちがRS485のような通信の専門家であり、位置の相違の問題を解決できたならうまく行っていたでしょう。異なる場所で動作するデバイスには、それぞれ異なる接地ポイントがあり、相対電圧も異なります。RS485では、2つのデバイスが参照しているGNDの電位が異なる場合でも、データインテグリティーは無事に保たれます。これは、RS485が差動信号を使用し、論理1は一対のデータラインの中で論理0により反映されるためで、データ信号をGNDに対して参照するシングルエンドの信号とはこの点が異なります。 速度 : 最大距離における伝送速度は100kbpsと規定され、これはほとんどのアプリケーションで十分以上の速度です。これに対してRS232などの標準はシングルエンドの信号処理を使用しているため、最大で15mまでしか伝達できません。これに近い性能を持っているのはCANバスで、 1,000mの距離で50kbps までの伝送速度を実現できますが、RS485と比較して、ファームウェアレベルでの実装ははるかに困難となります。 RS485は電気的な標準のみを定義しており、インターフェイスのプロトコルは Modbus
高電圧設計向けのPCBレイアウトについて計画する方法 Thought Leadership 高電圧設計向けのPCBレイアウトについて計画する方法 以前、都市プランナーの友人とトレイルランニングをしていたことがあります。私が疲れてやる気を失くしてしまう前に少しでも長く走らせようと企んだ彼女は、街の区画整理や建設に関することについてあれこれ聞かせてくれました。地元の政治の裏話に興味をそそられた私は、走る辛さを忘れたものです。 友人は賛成しないでしょうが、高電圧PCB向けのレイアウトは複雑な都市計画にいくつかの類似点があります。高電圧PCBでは通常のPCB設計に関する検討事項に加え、最終製品の最高性能を確保し、寿命を迎えるまで保護するために、基板全体で電界強度を制御、最適化できるレイアウトが必要になります。 高電圧領域の分離 都市計画で区画地域を指定し、土地の用途を制限するのと同じように、設計者は高電圧回路をグループ化し、基板の他の部分への影響を最小限にしなければなりません。高電圧と低電圧の領域を分離することで、基板でのアーク放電のリスクを低減できます。 高電圧の領域を物理的に分離する方法の1つは、周辺にinsertを追加することです。基板のレイアウトを作成する際は、insertを配置した場所にルータ加工する長穴を配置します。長穴が実装できるかどうかや、長穴の許容差については、製造業者に確認する必要があります。 基板の中で最も電圧が高い領域の近くに長穴を配置すると、過電圧になる可能性が高くなります。 Proto Express は、度重なるアーク放電に耐え得るよう長穴を設計することを推奨しています。長穴の最小幅は、基板で想定される最高電圧で 十分な保護 を確保できるものでなければなりません。長穴のサイズに少しマージンを追加すれば、コロナ放電やアーク放電で長穴の縁が炭化しても、PCBは損傷を受けずにすみます。これが重要なのは、縁がアーク放電による損傷を受けるのに伴って、PCB材料の耐性が低下するからです。 長穴は、基板の他の機能やビアと同様に、製造中にルータ加工されます。これが完了すると不活性絶縁材が長穴に追加され、垂直の障壁が形成されます。電圧が低ければPCB材料を使用できるものの、電圧が高い場合はポリエステルやテフロンなどの材料を使用したほうがよいでしょう。insertはクリップや接着剤で固定できるほか、長穴やinsertを所定の場所にロックできる形状に設計することも可能です。 高電圧の領域を分離することは、基板全体の電圧を徐々に下げるために重要 基板全体の電圧を徐々に低減 電圧の高い領域を分離した後も、残りの部分を「区画分け」して電圧を徐々に下げられるようにしなければなりません。ここでは、メインの導体の周辺に低電圧で稼働する回路を配置することで、電界を再分離できます。電界強度が低い領域では、コロナ放電やアーク放電が発生する可能性が低くなります。 高電圧設計での電界の分離には、 電圧浮動環 や電界格子環も使用できます。これらの環は、設計で保護される高電圧源のAC/DCの特性に応じて、抵抗やコンデンサーと連動したり、 終端として機能したりします。かなり高度な設計コンポーネントのため、使用を検討する場合は資料を詳しく確認することが推奨されます。 ノイズ源の分離