Part Insights Experience

Access critical supply chain intelligence as you design.

Component Management Made Easy

Manage your components, get real-time supply chain data, access millions of ready-to-use parts.

Filter
0 SelectedClear ×
Clear
6層スタックアップ EMC EMC向上のための6層PCBスタックアップの設計 6層のPCBは、高いネット数と小さいサイズを持つ様々なアプリケーションにとって、経済的で人気のあるスタックアップです。大きなボードは、4層のスタックアップで十分機能することがあり、信号層を犠牲にしてボードの各側間の隔離を確保できます。適切な6層スタックアップを使用すると、異なる層間のEMIを抑制し、高いネット数を持つファインピッチコンポーネントを収容できます。しかし、4層または8層のスタックアップを使用する方が理にかなっている場合もあり、この判断をするためには、ボード内のプレーン層の機能を理解することが役立ちます。 電源、グラウンド、信号プレーンはいくつ必要ですか? この質問への答えは非常に重要であり、実際にはボードのアプリケーションに大きく依存します。限られたスペースで密度の高いボードをルーティングしているが、すべてが低速またはDCの場合、2つのプレーン層と4つの信号層で十分なことがよくあります。しかし、その場合、創造的なレイアウトとルーティングで層数を4層に減らすことがよくあります。 EMIへの感受性を大幅に減らす必要がある場合、代替のスタックアップを使用し、より多くの電源/グラウンド層と少ない信号層を選択するべきです。これがデジタルボードまたは混合信号ボードである場合、信号を平面層に対して配置し、密接に配置された電源/グラウンド平面ペアを使用することで、EMI問題を引き起こすことなくボード全体に自由にルーティングするための柔軟性を得ることができます。 シールド缶のような不格好な解決策を必要とせずに、ボードの周りにさらにグラウンドを追加することも、大きな遮蔽効果をもたらすことができます。 デジタル信号とアナログ信号を混合する場合、高周波と低周波の信号を混合する場合、またはこれらのすべての組み合わせの場合でも、6層PCBスタックアップの創造的な使用が可能です。ある時点で、より大きなボードやスタック内の層を増やす(またはその両方!)必要があるかもしれません。6層PCBスタックアップのための多くの信号/平面層の組み合わせがありますが、以下にいくつかの一般的なものを示します。 6層PCBスタックアップの例 これを念頭に置いて、いくつかの6層PCBスタックアップの例を見てみましょう: 信号+電源/グランド/2信号層/グランド/信号+電源 この6層PCBスタックアップの例は、内部層の低速トレースを外層のトレースから遮蔽する人気のあるエントリーレベルのオプションです。また、固体平面への密接な結合もあります。信号は、直交している限り、低周波数/遅い切り替え速度で、または内部層を通してルーティングできます。私は、互いおよび内層の低速/周波数トレースからそれらを遮蔽するために、高速デジタルおよび/またはアナログ信号を外層にルーティングするでしょう。以下に例を示します。 これについては、アナログとデジタルを内層で混在させないでください。ただし、ボードの異なる領域にそれらを分離できる場合を除きます。しかし、デジタルとアナログのセクション間に分離が必要なその種の状況では、内部平面を持つ4層スタックアップで何とかなるかもしれませんし、創造的なレイアウト/ルーティングを行うか、または4層で好まれるSIG+PWR/GND/GND/SIG+PWRの配置を使用できます( ガイドラインについてはこちらを参照)。 このタイプのスタックアップでは、 レイヤー2を電源プレーンレイヤーにしないでください、また、L3+L4で平行にブロードサイド結合ペアを試みないでください。代わりに、信号レイヤー上でPWRをルーティングします。これに伴う主な問題は、電源とグラウンドプレーンレイヤー間の インタープレーン容量の欠如と、L1からL5への高インダクタンスのリターンパスです。これらのプレーンレイヤーが分離されているため、L1上の信号の予測不可能なリターンパスを補償するために、より多くのデキャップとグラウンドリターンビアが必要になります。この理由から、これらのボードは、正確なリターンパスの予測と追跡を必要としない電力またはDCシステムでのみ使用すべきでしょう。 信号/GND/PWR/GND/信号/GND この6層PCBスタックアップの例は、高速信号に多くのデカップリングを提供する必要があるが、信号用に3層分の密度が必要でない基板にとって良い非対称スタックアップです。一つの例は、高速(L1)と低速(L5)の信号の混在で、これらは互いに隔離され、密接に配置されたPWR+GNDプレーンペアが 高速電力整合性をサポートするための高いデカップリングを提供します。内部信号層は、2つのグラウンドプレーンの間に封入されるため、表面信号層から遮蔽されます。また、固体導体が効果的な遮蔽を提供するため、内部信号層がEMIの干渉を受けるのを抑制するのにも役立ちます。電源とグラウンドプレーンは、高速デジタルデバイスのための効果的なデカップリングを提供するために、おそらく密接に配置されるでしょう。 このスタックアップの主な問題点は、下層のグラウンドを切り取って部品を配置するスペースを作らない限り、上層にのみ簡単に部品を配置できることです。つまり、基本的には片面基板を構築していることになります。これは製造にとって高価な提案であり、内部信号層へのビアを配置するために多くのドリリングが必要になります。これは、4層または8層のPCBスタックアップの利点を強調しています。8層スタックアップでは、内部層に隣接する電源/グラウンドの同様の配置を作成しながら、内部ルーティングや下層の部品/ルーティングも収容できます。 信号/グラウンド/電源/信号/グラウンド/信号
制御が必要なルーティングインピーダンス 制御が必要なルーティングインピーダンス 制御インピーダンスルーティングの設計アプローチは、高速PCB設計の重要な要素であり、PCBの意図した高速性能を確保するためには、効果的な方法とツールを採用する必要があります。したがって、PCB内のルートを慎重に設計しない限り、インピーダンスは制御されず、トレース全体を通じて点から点へとその値が変動します。そして、PCBのトレースが高周波数で単純な接続のように振る舞わないため、インピーダンスを制御することで、信号の完全性を保持し、電磁放射の可能性も減少させます。 制御インピーダンスを決定するものは何か? PCBのインピーダンスは、その抵抗、導電率、誘導性および容量性リアクタンスによって決定されます。しかし、これらの要因は、基板構造、導電性および誘電体材料の特性、導体の構造および寸法、および信号リターンプレーンからの分離、ならびに信号特性の機能です。 基本的なレベルでは、トレースインピーダンス値はPCB構造から決定され、これらの要因によって生成されます: 誘電体材料(コア/プレプレグ)の厚さ 材料(コア/プレプレグ、はんだマスクまたは空気)の誘電率 トレース幅と銅の重さ 高周波を見ると、インピーダンスは銅の粗さ( スキン効果の増加を決定する)や損失正接(誘電体の損失)によっても決まります。設計で最も滑らかな銅を使用しても、銅張り積層板やプリプレグに粗い表面を確保するために、PCB製造では粗面化処理が使用されます。どんな場合でも、銅の粗さは常に存在します! 典型的な構成 まず、典型的な構成を見てみましょう。トレース構成にはいくつかの広いクラスがあります: シングルエンド:デジタル信号やRF信号を単独で運ぶ孤立したトレース 差動トレース:等しく反対の極性で一緒に駆動される2つのトレース 非共面:トレースが配線されている同じ層に追加の銅がないトレース構成 共面:トレースと同じ層に接地された銅プールが含まれるトレース構成 多層PCBを検討する際、設計者はトレースの制御インピーダンスが平面(リファレンス)によって遮蔽されているため、トレースの両側の平面間の誘電体の厚さのみを考慮すべきであることを覚えておく必要があります。ここに最も一般的な構成の例をいくつか示します: Er = 材料の誘電率 H
高速・高周波PCBにおける終端方法 高速・高周波PCBにおける終端方法 高速デジタルシステムを扱う際には、終端の話題が必ず出てきます。ほとんどのデジタルシステムには、少なくとも1つの標準化された高速インターフェースがあり、または高速なエッジレート信号を生成する高速GPIOが存在する可能性があります。高度なシステムには、通常、半導体ダイ上に適用される終端を持つ多くの標準化されたインターフェースがあります。実際に終端が必要かどうかを判断した場合、どの方法を使用すべきでしょうか? 実際には、多くのデジタルシステムではデジタル通信のための標準化されたバスを多くのコンポーネントが実装しているため、離散終端器の適用は非常に一般的ではありません。しかし、高速I/Oを持つ高度なコンポーネントを扱っている場合、離散コンポーネントで手動で終端を適用する必要があるかもしれません。このような状況が発生するもう一つの例は、特定のプロセッサーや FPGAで時々使用される特殊なロジックです。最後に、RF終端の問題がありますが、これはデジタルシステムの終端とは非常に異なります。 終端の適用時期と方法 上述のように、離散コンポーネントで手動で終端を適用する必要があるケースは限られています。 あなたのインターフェースにはインピーダンス仕様がありません データシートには、手動での終端が必要であると記載されています インターフェース仕様では、特定の終端(例: DDR、 イーサネットのボブ・スミス終端)が要求されます RFとデジタルのインピーダンスマッチングはやや異なります。全体的な目標は同じです:伝送線に送信された信号は、伝播中に最小限の損失を経験し、受信コンポーネントによって正しい電圧/電力レベルで登録されるべきです。以下の表は、デジタルとRFで使用される終端方法を比較しています: デジタルチャネル RFチャネル 終端帯域幅 広帯域終端回路が必要 狭帯域終端回路が必要 電力損失 特定の場合にはある程度の電力損失が許容される 通過帯域での電力損失はないことが望ましい 適用範囲
組み込み型ソーラーシステム向けのPCB設計ガイドライン Thought Leadership 組み込み型ソーラーシステム向けのPCB設計ガイドライン 旅行から戻って来た直後に、もう一度旅行に出掛けたいと思ったことはありませんか? 私にはそんな経験があります。前回のビーチリゾートでの休暇が、雷雨が続いたせいで台無しになってしまったのです。旅行の計画を立てるときは、予測できない天気というものがいつもジレンマになります。アウトドアで過ごす予定があればなおのことでしょう。 屋外での使用が想定される組み込み型のソーラーシステムを設計する際、私はこれと同じ慎重な姿勢で取り組みようにしています。こうしたシステムは、安定した電力供給で稼働する組み込み型のシステムとは完全に異なる難題です。例によって、私は苦労の末に慎重になることを学びました。というのも、最初に手掛けたソーラー式の試作は、1日でも雨が降ると稼働しなくなってしまったからです。 組み込み型ソーラーシステムについては考慮すべき状況がたくさんあり、太陽光のない状態で何日も稼働するように計画しなければなりません。 組み込み型ソーラーシステムの設計で考慮すべき要素 1. ソーラーパネル 言うまでもなく、ソーラーシステムで最も重要なの要素はソーラーパネルです。これについては、多結晶や薄膜よりも効率がよく、暑い気候でも優れた性能を発揮する単結晶を選択したほうがよいでしょう。パネルの中には最大22%の 太陽光を電力に 変換できるものもあります。とはいえ、単結晶や多結晶の効率はサプライヤーによって異なるため、事前に詳細情報を確認しておきましょう。 2. 電池の容量 組み込み型のソーラーシステムで重要なパラメーターは、ソーラーパネルの性能が0%になった場合のシステムの持続性です。環境要因によっては、ソーラーパネルに数日や数週間、太陽光が届かない場合もあります。そこで必要になるのは十分な容量のある 電池 です。また、ソーラーパネルの充電率が電池の使用率を上回るようにしておく必要もあります。5時間かけて充電した電池が2時間で消耗してしまっては、とても効率的とは言えません。 3. 太陽光の照射 考え方によっては、ソーラー技術はいたって単純です。太陽光がなければ電力は生成されません。ただし必ずしも、8時間分の太陽光で8時間分の電力が生成されるわけではありません。「 太陽光ピーク時間 」という用語がありますが、これは太陽が空の最も高い位置にあって、ソーラーパネルが一番効率的になる時間帯を指します。こうした要素について認識し、太陽光ピーク時間を算出しておくことが望まれます。
低電力ワイヤレス通信用のRFテクノロジー: Ambient Backscatter Thought Leadership 低電力ワイヤレス通信用のRFテクノロジー: Ambient Backscatter 私は家族の再会が好きですが、私の拡大家族は40人もいるため、これはかなりの大事になります。カードで遊んだり、水泳をしたり、または夕食のテーブルなどどこでも、常に誰かが冗談を言ったり、話を始めたりします。実際に、ほとんどの人々が話を始めるため、皆に聞いてもらうには叫ばなくてはならないこともあります。電磁スペクトルの中での通信も、このように困難な場合があります。デバイスは多くの場合、データを伝送するために、空中に自分の信号を「叫ぶ」必要があります。この伝送には電子機器とエネルギーが必要で、一部のデバイスでは容積やバッテリー駆動時間の関係で実現できません。ワシントン大学の研究グループは、Ambient Backscatterによる通信を使用して、これらの問題点の解決を試みています。この方法により、データの伝送に必要な回路と電力が何桁も減少する可能性があります。Ambient Backscatterがワイヤレスネットワークへ実際に使用可能なら、大規模なモノのインターネットのセンサーネットワークに極めて有用となるでしょう。 Ambient Backscatter 技術者は、周囲の世界が電磁気信号に満ちており、その多くは人間の設計するデバイスにより生成されることを熟知しています。これらの伝送は他のデバイスにより検出可能で、さらに 発電にも使用可能 です。これらは意図しない受信機と干渉する可能性もあるため、FCCは 放射放出 について厳しい規制を行っています。しかし、これらの研究員たちは、空中の周囲の信号を逆に利用して、デバイス間で情報を伝達する方法を発見しました。 IoTセンサーとデバイスのバッテリーを 環境発電システム に置き替えることについては、最近多くの議論が行われています。一部の人々は、テレビ局の送信など高エネルギーのRF信号を電力に変え、デバイスに供給することさえも想定しています。このアイディアは いくつかの理由から 完全に実用的ではありません。しかし、この主な理由の1つは、単に電力が十分ではないということです。最低でもマイクロプロセッサー、センサー、ワイヤレス回路に電力を供給し、多くの場合は メモリ にも電力を供給可能な必要があります。低消費電力のプロセッサー、センサー、 メモリ は存在しますが、ワイヤレス接続には代償が伴います。ただし、Ambient Backscatterを使用すれば話は別です。
Altium Need Help?