Part Insights Experience

Access critical supply chain intelligence as you design.

Component Management Made Easy

Manage your components, get real-time supply chain data, access millions of ready-to-use parts.

Filter
Clear
EMIシールディング技術 EMIシールディング技術:PCB設計ソフトウェアで使用できる方法 電磁干渉(EMI)は、世界中の政府が電子デバイスが発生または受信することが許されるEMIの量に制限を設けるほどの問題です。電子デバイスは、意図しない放射を防ぎ、非常に高い周波数値まで導電性ノイズを抑制するように設計される必要があります。これは、PCBレイアウトのすべての回路にフィルタリングを追加する単純な問題ではなく、システム全体とその構造を考慮することについてです。 現代のEMIシールド技術はPCB設計において2つの領域に分かれます:ボードレベルの電磁シールドとエンクロージャーレベルの電磁シールド。EMCテストに合格するために役立つボードレイアウトの実践がいくつかあり、システムで過剰なEMIが検出されるのを防ぐためにエンクロージャーに加えることができる簡単な変更がいくつかあります。適切なPCB設計ソフトウェアを使用することで、設計者は両方のセットのソリューションを実装し、製造業者が設計を正しく構築するための十分な文書を持つことを確実にすることができます。 ALTIUM DESIGNER® 現代のEMIシールド技術を実装するための高度なレイアウトツールを備えたPCB設計ソフトウェア。 今日の現代のデバイスは、市場に出るためには電磁両立性(EMC)テストを受けなければなりません。これらのテストの背後にある考え方はシンプルです:電子デバイスから放出される電磁放射とその結果として生じる電磁干渉を測定します。もしボードがこれらのテストに合格しない場合、それは再設計のためにデザイナーのもとに戻され、新しいプロジェクトを完成させるためのより多くの費用と時間がかかります。しかし、PCB設計ソフトウェアで実装できるいくつかの基本的な設計戦略を用いることで、これらのテストに成功するための助けとなります。 EMIシールドは、ボードレベルの解決策が失敗した場合にエンクロージャ内にも実装できます。これらの解決策を実装するためにボードとエンクロージャを再作業する必要があったことがあるなら、効率的であり、ボードに変更を迅速に実装することがいかに重要かを知っているでしょう。Altium Designerの完全なPCBレイアウト機能セットとMCADコラボレーションスイートは、EMIシールディング技術の両方のセットを実装するために使用できる理想的なツールです。 レイアウトでのPCB EMIシールディング技術の実装 EMIシールディング技術を適用するためのいくつかのシンプルだが効果的な方法があります。コンポーネントおよび材料会社の中には、さまざまな周波数を対象とした特殊な電磁シールディング材料を供給するところがあります。フィルターや最良のレイアウト実践のような初期の方法が失敗した場合、PCBレイアウトで以下の機能を使用することができます: 金属製の回路基板シールド缶は、過剰な電磁放射を抑制するために、騒がしい回路の周囲にカスタム製作して取り付けることができます。 エラストマー電磁シールド材料は、PCBレイアウト内の特定のコンポーネントやコネクタを対象として電磁放射を抑制するために使用できます。 高電気伝導性メッシュ材料は、フレックスボードやリジッドフレックスボード特に、硬質のシールド缶に代わる柔軟な選択肢として使用できます。 分離された/スターグラウンドを均一なグラウンドプレーンに置き換えることで、複数の接地点を提供し、導電性の回路基板シールド材料を容易に接地できるようにするのに役立ちます。 フェライトビーズ、ロッド、プレートは、従来のフィルタ回路が失敗した場合に、ターゲットとなるEMIフィルタとして使用できます。 これらは、さまざまなベンダーからアクセスしてPCB設計ソフトウェアに組み込むことができる、いくつかのシンプルな方法とコンポーネントです。ただし、設計がEMCテストに合格できるように、PCBレイアウトにおいていくつかのベストプラクティスを実施することを確認してください。 最高のPCBレイアウトツールは、EMIシールドを追加するのに役立ちます PCBのレイアウトがどのように配置されているかによって、設計内の銅の配置のおかげでEMIシールドを提供することもできます。設計のルーティング方法とPCBのスタックアップの構築方法は、電子デバイスがEMCテストに合格できるかどうかに影響を与えます。Altium Designerのような最高のPCBレイアウトユーティリティを使用すれば、最適なルーティングとレイアウトの実践を簡単に実装して、EMIを防止し、設計に追加のEMIシールド材料を適用するのに役立ちます。
高Dk PCB材料の利点 高Dk PCB材料の利点 「高速設計」と「低Dk PCBラミネート」の用語は、しばしば同じ記事で、そしてしばしば同じ文で使用されます。低Dk PCB材料は、高速および高周波PCBにおいてその場を持っていますが、高Dk PCB材料は電力の整合性を提供します。低Dk PCBは、一般に損失正接が低い傾向にあるため選ばれます。したがって、高Dk PCB材料は、高速および高周波PCBに対して見過ごされがちです。 高速/高周波ボードの電力の整合性を見るとき、単に信号損失を受け入れるか、高速ラミネートによって提供される値を受け入れるのではなく、安定した電力のための全体的な戦略の一部として誘電率定数を考慮すべきです。これには、PCBの電力の整合性に影響を与える誘電率定数の実部と虚部の両方が含まれます。これを念頭に置いて、電力の整合性を確保するために高Dk PCB材料が果たす役割を見てみましょう。 高Dk PCB材料とPCB電力の整合性 まず最初に、電力の整合性を見るとき、常にレギュレータ段階から出力される電圧が、PDN全体で電力が流れるにつれて一定であることを確保しようとしています。これには、PDN分析と電力の整合性の2つの側面が挙げられます: DC解析:ここでは、PDNを構成する 導体間のIR降下のみに関心があります。誘電率定数はDC解析では役割を果たしません。 AC解析:AC解析とは、電力平面上の任意の時間変動電流の振る舞いを意味します。これは、PDNのインピーダンスが重要となる場面であり、下流コンポーネントで見られる電圧変動は、 PDNインピーダンスと時間変動電圧(オームの法則)の積です。 電力面とグラウンド面の間の誘電体として使用される高Dk PCB材料は、重要な電力整合性の利点を提供します。特に、グラウンド面と電力面の間のPCB材料の高Dk値は、より大きな 面間キャパシタンスを提供し、これはあなたの平面がより大きなデカップリングキャパシタのように機能し、PDNインピーダンスが低くなることを意味します。グラウンド面と電力面を近づけることも面間キャパシタンスを増加させます。 2006年のIEEE論文からのいくつかの例示的なシミュレーション結果が以下に示されています。 誘電率定数のもう一つの重要な側面は、虚数部分またはDf値です。これは通常、損失正接を使用して要約されますが、これは高速/高周波ボードで特定の積層材の有用性を調べる際に使用する唯一の指標ではありません。