RF設計

RF設計は高周波で動作するため、シグナルインテグリティの問題を防ぐために慎重なレイアウトと配線が必要です。RF PCBレイアウトには、デジタルコンポーネントを含むセクションが含まれることがありますが、慎重にレイアウトすることで、RF信号とデジタル信号の干渉を防ぐことができます。RF PCB設計、レイアウト、配線、シグナルインテグリティについては、ライブラリのリソースをご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
フィルターをクリア
仮想配列計算 MIMOシステムで仮想配列を計算する方法 1 min Blog MIMO機能を使用するRFおよびセンシングシステムには、仮想アンテナの設計と配置に関するいくつかの重要な設計上の制約があります。これらのシステムでは、より高い解像度とより高い送受信ゲインが必要なため、ビームフォーミングと低レベル信号の受信用により多くのアンテナを配列に詰め込む傾向があります。この傾向には理由があり、アンテナ配列システムの重要な概念に関連しています。 複数の送信アンテナと受信アンテナが同じ場所に配置されている場合、それらは連動して、仮想アンテナ配列と呼ばれるものを形成します。仮想配列はアンテナの実際のセットではなく、アンテナ配列の動作を説明する数学的に同等のオブジェクトです。空間多重化を含むMIMO仮想配列機能を可能にするアンテナ配列を構築する上で重要なのは、仮想配列内で仮想アンテナの配置を設計することです。 アンテナをPCB上で適切にグループ化することにより、実際の配列の送受信ゲインが高くなるように仮想配列を設計できます。これは通常、物理的に大規模な無線システムで行われますが、PCB上に仮想アンテナ素子を配置するシステムでも行うことができます。アンテナの配置と配線が正しく行われている限り、MIMOモードで動作するアンテナ配列から最大限のゲインを得ることができます。この記事では、RFの計算方法について説明します。 仮想配列とは? ビームフォーミングや空間多重化のために協調して動作する、同じ場所に配置されたアンテナシステムはすべて、仮想RF配列と呼ばれる同等のアンテナ配列であるかのように動作します。これは次の定義につながります。 配列の送受信アンテナセットが連動して信号を送受信する場合、 仮想配列 と呼ばれる同等のアンテナ配列のように動作します。仮想配列が送信または受信モードでのみ動作する場合、送信/受信の両方における実アンテナゲインは仮想配列ゲインと等しくなります。 仮想配列は架空のエンティティですが、電子ステアリング範囲(方位角と仰角)および角度分解能計算機に対する配列の影響を視覚的に理解するのに役立ちます。要するに、より多くの素子が連動する場合、 どのタイプのビームフォーミングモードでも、放出されるビームの指向性ゲインが高くなり、角度分解能が向上します。仮想配列を理解するには、次の2つの量を計算する必要があります。 仮想配列内の仮想素子の数 仮想配列内の素子の位置 仮想アンテナ素子の数と解像度 NTX送信素子とNRX受信素子を含む平面仮想アンテナ配列内の仮想素子の数は次のとおりです。 この数値は、配列の最大解像度に関係するため重要です。速度と距離の解像度が角度解像度の影響を受けるレーダーシステムでは、レーダーで画像を形成できるレベルまで解像度を向上させるために多大な努力が払われてきました。従来の 3-TX/4-RX直列給電パッチアンテナ配列は、レーダー画像に必要な解像度を提供するのに十分な解像度を備えていないため、これらのシステムのアンテナ数を増やすことに重点が置かれています。 MIMO仮想配列として動作する場合、配列全体の角度分解能は、次のように単一のアンテナの角度分解能に関連しています。 このことは、より小型の機器に搭載する仮想アンテナ配列ゲイン計算機のサイズを大きくしようという動きを示しています。配列の数が多いほど解像度が向上し、ゲインが高くなるので、より低い電力や広い通信距離でシステムを運用できる可能性があります。 同様に、スキャン範囲は、仮想配列内の仮想素子間の等価距離によって制限されます。従来の回折限界発光パターンが必ずしも成立しないスパース配列では、仮想配列もスパースとなり、解像度が上式に従わなくなります(このことは、「同じ場所に配置すること」を厳密に定義する必要性を強調しています)。 配列ゲイン 記事を読む
RF設計ソフトウェア 高周波基板用に最高のRF設計ソフトウェアを使用します 1 min Blog 高周波数とデジタルインターフェイスに対応する無線周波数システムの設計は難題であり、最適なRF設計ソフトウェアツールが必要です。高GHz帯のRFエンジニアリングは、最高のRF設計ソフトウェアを援用して、正確な基板トレース配線、レイヤスタック設計、および回路設計を保証します。Altium DesignerをRF設計プロセスに使用して、次のGHz帯システムを製造に移行します。 Altium Designer 回路設計機能、強力なPCBエディタ、 RFエンジニアリング専門家向けのシミュレーション機能を備えた統合回路基板設計アプリケーション。 多くの電子部品製造エンジニアはデジタル設計のコンセプトに精通していますが、 RF設計に特異な点についてはどうでしょうか。高周波で動作し、基板上のデジタルインターフェイスで動作するRFシステムでは、適切な手順が実行されない限り信号品質が低下するシグナルインテグリティの問題が、多数発生する可能性があります。最高のRF設計ソフトウェアを使用する設計者は、RFシステム用の最適な基板レイアウト技法に従うと同時に、最良のシミュレーションおよび分析機能によってシステムを評価することができます。GHz帯周波数に対応するRF基板を設計する必要がある時は、業界最高のデジタル、RF、および混在信号設計ソフトウェアである Altium Designerのような総合設計プログラムを使用します。 RFエンジニアリングにおける正確な回路設計 すべての新規の電子システムは回路設計として始まり、電子部品製造エンジニアはRFエンジニアリングのための強力な設計とシミュレーションのツールを必要とします。RF回路設計では、高周波数で動作でき、またシステムの構築、および実際のコンポーネントを使用して設計を評価できるシミュレーションが必要です。フィルタやマッチングネットワークなどの回路を経由した信号伝播を理解するには、システムレベルのデザインアプローチが必要です。すべてのソフトウェアツールがこれらのタスクに対応できるわけではなく、多くの設計者は、フィールドソルバーを回路設計エディタおよびSPICEシミュレーターと組合せてRF設計を作成せざるを得ません。 必ず、統合されたコンポーネントライブラリと基板サプライチェーンへの接続を備えた最適な回路設計ツールを使用してください。Altium Designerの回路図エディタには、 SPICEシミュレーションの標準コンポーネントモデルに対応する強力なSPICEシミュレーションエンジンが搭載されています。1つのプログラムですべてにアクセスできるため、高品質の電力コンバータを設計し、その設計を迅速かつ容易に検証できます。 混在信号の設計とシミュレーションのツールを備えたRF設計ソフトウェア Altium Designerには、 RF回路設計および分析に使用するシミュレーションモデルを使って、非常に多くの実際のコンポーネントにアクセスできる最高の回路図エディタが付属します。設計者は、 RF設計プロセスを効率化すると同時に、システムレベルのデザインと分析を支援できます。Altium 記事を読む
高周波プリント基板の素材の選択についての最善手法 高周波プリント基板の素材の選択についての最善手法 1 min Blog 皆さんは回路と高周波基板の仲人になる必要があります 。 私は最近、お見合いパーティーに行ってみたのですが失敗でした。パーティーは、私の自宅近くの素敵なレストランで行われました。私は、少し目立つ格好をしていい印象を与えようと思い、素敵なベロアのシャツを着ていくことに決めました。でも、ベロアは私が思っていたほど高級感はなく、相手の電話番号を1つもゲットできずに家に帰ってきてしまいました。夜になって気が付いたのは、「やっぱり素材は重要だなあ、プリント基板設計も同じようなものだ」ということです。シャツの生地がパーティーでの成功に影響するのと同様に、プリント基板の素材も高周波回路のシグナルインテグリティに影響を与える可能性があります。基板の減衰を最小限に抑えるには、適切なグラスファイバー、樹脂、銅箔を選択する必要があります。最適な組み合わせを選択するのに役立つさまざまな最善手法があります。ただ、その際には価格その他の点で注意すべき点がいくつかあります。 なぜ素材が重要なのか? 適切なプリント基板の素材を使用することで、回路での混信を避けることができます。絶縁体の品質が低かったり銅箔が最適でないと、想定を超える影響が発生する可能性もあります。 では、正確にはどのようにして絶縁体がシステムに影響を及ぼすのでしょうか? すべての絶縁体は、分極した分子から構成されています。これらの分子は、信号により発生する磁場に反応して振動します。周波数が高くなるほど振動が大きくなり、 エネルギーが熱として失われます。低損失の絶縁体を使用すると、このエネルギー損失を小さくできるのですが、それについては後で詳しく説明します。 損失のもう一つの大きな原因は、銅の導体そのものにあります。大学で「表皮深さ」について何か学習した記憶がある方もいるでしょう。そうです。電子が常に導体の中心を流れるわけではないことを思い出してください。周波数が高くなるにつれ、電流が流れる場所は最大表皮深さまでの部分に限られてしまいます。銅の導体の表面がニッケルで仕上げられているとすると、大部分の電流は このニッケル層を流れることになります。こうなると損失が発生してしまうのです。また、導体全体が銅で作られていたとしても、ミクロの目で見ると銅の輪郭が一様でない場合があります。たとえば銅に微細な隆起部があった場合、電流は隆起部を登ったり降りたりすることになり、 抵抗が増大して損失が大きくなります。 基板の絶縁体と導体が、シグナルインテグリティの大きな不整合の原因となる場合もあります。では、このような変数を抑えるにはどうしたら良いでしょうか? 皆さんは基板のことを忘れてしまう場合があるかもしれませんが、基板は重要です 選択できる要素は何か? 損失を低減するためにコントロールできる主な変数は2つあります。基層と金属箔です。 基層 - プリント基板の基層を構成する素材としては、エポキシ樹脂、グラスファイバー織物、セラミック板など さまざまなものが考えられます。高周波回路に望ましいのは、 最も誘電率(Dk)が小さい基層です。 記事を読む