シミュレーションと解析

シミュレーションと解析は、回路図ではプリレイアウト、完成した物理設計ではポストレイアウトで実行できます。Altium Designer には、SPICEシミュレータ、反射やクロストークのシミュレータ、サードパーティのフィールドソルバとの統合など、両方の領域で成功するためのリソースが含まれています。シミュレーションツールの使用や設計における電気的挙動の解析については、ライブラリのリソースをご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
高速PCBのチャネル帯域幅 チャネル帯域幅:高速PCBインターコネクトを適格化する正しい方法 1 min Blog PCB設計者 PCB設計者 PCB設計者 半導体メーカーや非専門家からの高速PCB設計ガイドラインを読むと、常に立ち上がり時間を使って信号完全性を分析することが話題になります。信号の立ち上がり時間は重要で、EMI、クロストーク、遅延調整許容差などを決定します。設計がギガビット毎秒のデータレート以上で動作する場合、立ち上がり時間は通常、遅延調整で終わり、他のすべての信号完全性要因は周波数領域で分析されます。 プロの設計者は、単純な指標である帯域幅の観点で考えます。帯域幅が言及されると、初心者設計者は直ちに膝周波数を信号帯域幅の尺度として挙げます。これは完全に間違っています。物理的な伝送路によって減衰された後でも、すべてのデジタル信号は無限の帯域幅を持っています。 しかし、マルチGbpsの速度で設計する場合、関連する帯域幅はチャネル帯域幅です。言い換えれば、これは伝送路が最小限の減衰や反射で信号を強力に伝送できる周波数範囲です。Sパラメータから帯域幅をどのように決定するかの基本的な理解は、1 Gbpsを超えて作業したい人にとって必須です。 帯域幅の定量化方法 帯域幅は、周波数範囲の測定から決定することができます。すべてのデジタルインターフェースには帯域幅要件があり、送信機と受信機を接続する物理チャネルは、特定の範囲の周波数(DCからある最大周波数まで)内で一定量の帯域幅を許容しなければなりません。別の言い方をすると、帯域幅の仕様は次のように記述できます: 物理チャネルは、DCからある最大周波数までの周波数範囲内で、過度に電力を吸収または反射してはなりません。 物理チャネル(つまり、伝送線)が十分な帯域幅を提供しているかどうかは、Sパラメータプロットを見ることで確認できます。伝達関数やTパラメータなど、他にも使用できるパラメータプロットがありますが、最も一般的なのはSパラメータの使用です。 以下に示されている一対の差動ブラインドビアのリターンロスプロットを考えてみましょう。これは約70 GHzで-10 dBの限界に達します。このチャネル(インピーダンスが100オームの差動ペアに接続されたブラインドビア)は70 GHzの帯域幅を持っていると言えます。 Sパラメータプロットや伝達関数プロットを見るとき、チャネルの最大帯域幅を決定する一貫した定義を持つ必要があります。Sパラメータプロットにおいて、事実上の帯域幅制限は、リターンロスが-10 dBに達する最低周波数です。上記の例のプロットでは、問題の伝送線はリターンロススペクトラムに基づいて23 GHzの帯域幅を提供できるとされます。 これは普遍的な標準ではなく、異なるインターフェースは使用される伝送線に対して異なる要件を持つことに注意すべきです。例えば、802.3ワーキンググループによる224G PAM-4シグナリングの研究では、帯域幅制限は-10 dBのリターンロスではなく、-15 dBのリターンロスで定義されています。 チャネル帯域幅はデータレートとどのように関連しているのでしょうか? 記事を読む
EMIシリーズ_パートI PCB設計におけるEMI制御の習得:PCB内での信号の伝播方法 1 min Blog PCB設計者 PCB設計者 PCB設計者 電磁干渉(EMC)に対応するためのプリント基板(PCB)の設計には、電磁場と電流の観点から信号の伝播をしっかりと理解することが求められます。これらの概念は、電磁場の放出レベルを低く抑え、外部からの放出や干渉に対する感受性を低くするPCBの設計に役立つため、重要です。 この PCB設計におけるEMI制御のマスターシリーズの最初の記事では、これらの概念をより深く掘り下げ、プリント基板設計にどのように適用するかを見ていきます。 伝送線路における信号の伝播の概念 PCBにおける信号の伝播について考える際には、水がパイプを流れるという類似から、電磁場と伝送線路の観点にシフトすることが重要です。伝送線路は、含まれた電磁場の形でエネルギーを一地点から別の地点へ転送するように設計された構造です。プリント基板の文脈では、伝送線路は少なくとも2つの導体によって形成されます。これらの導体は、電磁場を含むことと、それらを回路内の別の地点に導くことにおいて同じくらい重要です。2つの導体のうち1つが欠けていると、信号を構成する電磁場は未含有のままとなり、これらの場の拡大によりEMC試験に失敗する可能性があります。 ここから浮かび上がる非常に重要な概念は、電磁信号は導体の内部ではなく、2つの導体の間の空間、すなわち誘電体の中に含まれているということです。EMCの観点からの私たちの目標は、2つの導体の間に含まれる電磁場を最大化し、その周囲にある電磁場を減少させることです。 図1 - PCBにおけるデジタル信号伝播の表現 PCBでは、信号伝播に使用される2つの導体は、信号ポテンシャル導体と戻りおよび参照ポテンシャル導体です。これをイメージする最も簡単な方法は、信号源に接続された上層が信号トレースをルーティングするために使用され、下層が信号源に接続された固体銅層であり、信号ポテンシャル参照にも接続されている二層基板です(図1参照)。私たちが信号と呼ぶものは、これら2つの導体の間に含まれる電磁場です。これは、信号が単一の導体に含まれているのではなく、これら2つの導体の間の誘電体に含まれる電磁エネルギーであることを意味します。また、これは誘電体の特性が信号の伝播に影響を与え、特に信号(またはEM波)が伝播する速度に影響を与えることを意味します。信号の速度は誘電体内の光速です。2つの導体の間には信号が存在するポイントと、まだ信号に達していないポイントがあります。デジタル信号において、これら2つの領域の間に完全な信号があり、まだ信号が存在しないポイントを 信号エッジまたは 信号波面と呼びます。これはデジタル信号における低レベル論理から高レベル論理への遷移ポイントです。 EMCの観点から、このポイントは非常に重要です。なぜなら、これは導体間で電場と磁場が低から高に遷移する場所だからです。このエネルギー状態が変化する速度が速いほど、すなわち信号が低レベルから高レベル論理に遷移する速度が速いほど、短時間でエネルギーの変化が圧縮されます。信号が伝送線路内でその源から目的地に伝播する際、信号波面または信号エッジが信号の伝播をリードします。 前方電流、戻り電流、及び変位電流 もう一つの重要な概念は、信号エッジが伝播するのを追うと、先端が電磁場の変化であるため、これが2つの導体の間の誘電体内に変位電流を生成することがわかるということです。この現象は、オリバー・ヘビサイドによってまとめられたマクスウェルの四つの方程式、特にアンペール-マクスウェルの法則によって説明されます。これをイメージする最も簡単な方法は、AC源が適用されたときのコンデンサーを考えることです(図2参照)。 図2 - Eフィールドが適用されていないコンデンサー(a)、正のEフィールドが適用されたコンデンサー(b)、負のEフィールドが適用されたコンデンサー(c) 実際には、コンデンサーのプレートとその誘電体の間に導電電流はありませんが、誘電体に含まれる束縛電荷は、コンデンサーのプレートの適用された電場に従って単に極性を持ちます(変位します)。これは、導電電流がコンデンサーのプレートを流れているかのように見えます。変位電流の概念は、信号伝播中に電流が形成される可能性があることを理解するために重要です。特に信号が負荷に達する前にです。古典回路理論の授業で教えられるように、電流は常にループで流れます。では、どうして信号が負荷に達する前、つまり、信号が源から負荷に向かい、再び源に戻って電流ループを形成するために連続的な導電電流を確立する前に電流が存在するのか ?これは変位電流のおかげで可能です。変位電流は、信号が伝播する際に電流がループ内で流れ続けることを可能にします。変位電流がない場合、導電電流だけがあれば、信号の伝播は起こりません。導電電流だけで作られた電流ループは、負荷に達する前にループを閉じることができないからです。これは、導電電流を通して誘電体を流れる電流が必要であることを意味しますが、定義上、これは不可能です。しかし、この見かけ上の電流、変位電流により、信号が伝播する際にループが瞬時に閉じます。 記事を読む
伝送線路インピーダンスの損失を補償する方法 伝送線路インピーダンスの損失を補償する方法 1 min Blog 電気技術者 電気技術者 電気技術者 銅の粗さは、伝送線インピーダンスにおいて最も大きな不確実性を生じさせる要因かもしれません。確かに、異なるソルバーは異なる総合モデルと計算方法を実装してインピーダンス値を決定しますが、粗さの影響を計算しようとする試みは新たな不確実性をもたらします。これは、粗さに基づくインピーダンスが使用される特定のモデルと、粗さが主要な影響を及ぼす周波数範囲に依存するためです。 誘電体の損失も、伝送線の実際のインピーダンスを、典型的な伝送線計算機で計算する無損失インピーダンス値と大きく異なるものにします。 この記事では、30 GHz範囲まで適用可能な、広い周波数範囲で粗さを考慮する簡単な方法を紹介します。これは、ほとんどのデジタルアプリケーションとデータレートをカバーし、無損失伝送線インピーダンス計算で粗さを補償するための迅速な方法を提供します。 インピーダンス計算には損失を含める必要があります 銅の粗さ計算を取り入れる課題は、モデルの使用ではなく、現代のEDAソフトウェアで多くのモデルが利用可能であることです。覚えておくべき最初のポイントは: 無損失インピーダンスのみが、すべての周波数で一定の値になります! もし 銅の粗さや誘電体の損失が大きく影響する周波数範囲(約3GHz以上)で作業している場合、トレースのインピーダンスが周波数の関数として変化することを理解する必要があります。その結果、設計者はしばしば以下のように伝送線インピーダンス計算問題に取り組みます: 設計者は Altium DesignerのLayer Stack Manager、Polar Instruments、またはオンライン計算機を使用して、正確な 50オームのインピーダンス の幅を決定します。設計が完了し、Sパラメータをシミュレートまたは測定すると、設計者は実際のトレースインピーダンスが損失のないインピーダンスとかなり異なることを発見します。 上記は単終端トレースと差動トレースの両方に適用されます。損失によるインピーダンスの偏差を推定する方法が必要であることは明らかです。この方法により、損失のないインピーダンス計算が実際に役立ちます。以下で見るように、損失による偏差は誘電体の損失正接の関数です。 高損失正接を持つマイクロストリップ例(Df = 記事を読む
効率的なDC-DCコンバータ設計 効率的なDC-DCコンバータ設計:Altium Designer 24 MixedSimによる自動測定 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア 現代の電子機器における主要な課題の一つは、特定の電源供給ソリューションを提供することです。このセクションは、ACからDCへのコンバーターやDCからDCへのコンバーターなど、さまざまなSMPS(スイッチングモード電源)で構成されることがあります。高電力アプリケーションでは、ACからDCへの変換には、デバイスの良好な電力因数(すなわち、高調波の削減と見かけ上の電力消費の削減)を達成するためにPFCコントローラーが必要になる場合があります。SMPS設計における典型的な課題は: 設計に必要な電源電圧と電流を達成するためのSMPSレギュレーターの数; 実装コスト; 設計を実装するために必要なエリア; レイアウト設計; 効率と熱削減または熱管理設計のサポート。 ポイント"d"と"e"は、Altium Designer Mixed Simulationを使用することで容易に対処できます。例えば、Altium Designerと統合できるKeysightのPower Analyzerを使用して、PCB内の電流密度をシミュレートできます。この記事では、DC-DCバックコンバーターをより効率的にする方法について掘り下げ、その効率を迅速に見積もるための簡単で効果的なヒントをいくつか共有します。 バックコンバーター設計について 基本的なバックコンバーターの回路図は 図1に示されています: 図1 4つのオペアンプを使用して、ランプ信号発生器(U3A)、エラーアンプ(U1B)、ランプ信号のバッファ(U2B)、および変調器(U2A)を作成します。基準電圧は、RCネットワークを介してエラーアンプに接続されたDCソースとしてシミュレートされ、ソフトスタート機能を提供します。 図1は、PWM変調を使用して出力電圧を設定する電圧モードコンバータです。 電力段はQ1、L1、D2、およびC2を中心に構築され、R7がコンバータの負荷抵抗として機能します。U3Aに関連するコンポーネントは動作周波数を設定し、C1を変更することで簡単に調整できます。C1を4.3nFに設定すると、周波数は約100kHzになります。 コンバータの安定性に影響を与える補償ネットワークは、安定性またはステップ応答(C4、C3-R10、およびR12-C6)を改善するために調整できます。R8とR9は、基準電圧とともに出力電圧を設定します。この場合、R8とR9は1:2の分割器を作成し、出力電圧を6Vにします。 記事を読む
SPICEシミュレーションモジュール - 自動測定 SPICEシミュレーションモジュール:設計の課題で時間とお金を節約するために、シミュレーションで自動測定を使用する方法 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア 電子回路のシミュレーションは、設計成功の鍵となります。SPICE回路シミュレータは、設計分析を加速するために使用できます。Altium Designerは、効率的かつ正確な方法で設計をシミュレートするのに役立ち、回路の機能運用について深い洞察を提供します。 Altium Designerでの主要な分析の一つが、回路の時間領域シミュレーションである過渡解析です。過渡解析の例を図1に示します。カーソルのペアを使用して、信号値の周波数を決定できますが、信号量は 「Measurements」というツールを用いて簡単に自動化できます。図1に示された回路の測定設定の例を図2に示します。 図1 - シンプルな電圧モードのバックコンバータ 図2 - バックコンバータの測定設定 Altium DesignerのSPICEシミュレータにおける自動測定 Altium DesignerのSPICEシミュレータには、さまざまな自動測定が利用可能です。その一部を図3に示します。これらの信号量は、すべての現代のオシロスコープで利用可能な測定オプションとして扱うことができます。例えば、信号のピークtoピークレベルやRMS電圧の明確な指示は、DSOだけでなくAltium Designer SPICEシミュレータでも表示できます。これらの測定の設定には、時間範囲分析と、測定によっては分析が行われる信号レベルの1つまたは2つのパラメーターのみが必要です。後者は、例えば周波数測定に必要です。 図3 - 自動測定タブの一部のリスト 記事を読む
BGAピンピッチのシグナルインテグリティ 224G-PAM4および448Gにおける信号整合性へのBGAピンピッチの影響 1 min Blog PCB設計者 PCB設計者 PCB設計者 PCB業界は、製造と信号整合性の両方の面で、常に半導体パッケージングに遅れをとっているようです。業界がデモから生産へと移行する224Gインターフェースを楽しみにしている中、Ethernet AllianceやSNIA/SSFのような組織は、超高データレートの次世代に焦点を当てています。28GHzから56GHzの帯域幅に達すると、信号整合性に影響を与える主要な要因が再び変化し、パッケージからPCBへのインターフェースでの損失と信号歪みが増加します。 これは、誘電体から銅の粗さへの損失プロファイルの変化が原因ではありません。理由は、PCBへの垂直遷移の構造、特にBGAパッケージの下側にあるものによるものです。BGAファンアウトルーティングのためのビア設計は、224G-PAM4および次世代448Gデータレートでの信号整合性に大きく影響を与える主要な要因です。業界がこれらの高速データレートに目を向けるにつれて、56GHzでのパッケージングとPCB構造における信号整合性を決定する要因は、448Gで必要とされるより高いチャネル帯域幅でも適用されます。 以下で見るように、56G-NRZや112G-PAMで機能したBGAおよびコネクタのピンピッチとサイズは、224G-PAM4では機能しない可能性があり、448Gでは確実に機能しません。これらの構造が信号整合性にどのように影響するか、およびPCB内およびパッケージング内でのMIAおよびボールアウト遷移を評価するために使用されるべき重要な指標を見ていきます。 224G PAM4で信号整合性にBGAピッチが重要な理由は? 224G PAM4インターフェースはナイキスト周波数が56 GHzであり、これは チャネル帯域幅がDCから少なくともこの値まで広がることを要求します。56 GHz近くでは、PCB内のBGAパッケージに接続する典型的なボールおよびビア構造は、電磁場共鳴とほぼ一致するサイズおよび長さのスケールを持っています。これらの共鳴に達すると、私たちは重大な帯域幅制限効果を見始めます。そして、これらの共鳴がピンピッチの関数であるため、これらの周波数で作業する際にはパッケージ設計の一部としてこれを考慮する必要があります。 56 GHzまで正確な入力インピーダンスマッチングを持つビアを設計することは、関連する課題です。以下の理由により関連しています: 56 GHz帯域幅で動作する差動インターフェースは、帯域幅仕様全体でマッチした入力インピーダンスを必要とします ビアは、56 GHz以下で電磁場の局在が不足するために放射を開始する可能性があります その後、信号ビアの周りの電磁場の局在を復元するためにステッチングビアが必要になります 差動ビアのアンチパッドと層の厚さは、異なる周波数範囲でビアの入力インピーダンスに影響を与えます 56 記事を読む