SPICE: Certainty for All Decisions

Design, validate, and verify the most advanced schematics.

シミュレーションと解析

Filter
Clear
仮想配列計算 MIMOシステムで仮想配列を計算する方法 MIMO機能を使用するRFおよびセンシングシステムには、仮想アンテナの設計と配置に関するいくつかの重要な設計上の制約があります。これらのシステムでは、より高い解像度とより高い送受信ゲインが必要なため、ビームフォーミングと低レベル信号の受信用により多くのアンテナを配列に詰め込む傾向があります。この傾向には理由があり、アンテナ配列システムの重要な概念に関連しています。 複数の送信アンテナと受信アンテナが同じ場所に配置されている場合、それらは連動して、仮想アンテナ配列と呼ばれるものを形成します。仮想配列はアンテナの実際のセットではなく、アンテナ配列の動作を説明する数学的に同等のオブジェクトです。空間多重化を含むMIMO仮想配列機能を可能にするアンテナ配列を構築する上で重要なのは、仮想配列内で仮想アンテナの配置を設計することです。 アンテナをPCB上で適切にグループ化することにより、実際の配列の送受信ゲインが高くなるように仮想配列を設計できます。これは通常、物理的に大規模な無線システムで行われますが、PCB上に仮想アンテナ素子を配置するシステムでも行うことができます。アンテナの配置と配線が正しく行われている限り、MIMOモードで動作するアンテナ配列から最大限のゲインを得ることができます。この記事では、RFの計算方法について説明します。 仮想配列とは? ビームフォーミングや空間多重化のために協調して動作する、同じ場所に配置されたアンテナシステムはすべて、仮想RF配列と呼ばれる同等のアンテナ配列であるかのように動作します。これは次の定義につながります。 配列の送受信アンテナセットが連動して信号を送受信する場合、 仮想配列 と呼ばれる同等のアンテナ配列のように動作します。仮想配列が送信または受信モードでのみ動作する場合、送信/受信の両方における実アンテナゲインは仮想配列ゲインと等しくなります。 仮想配列は架空のエンティティですが、電子ステアリング範囲(方位角と仰角)および角度分解能計算機に対する配列の影響を視覚的に理解するのに役立ちます。要するに、より多くの素子が連動する場合、 どのタイプのビームフォーミングモードでも、放出されるビームの指向性ゲインが高くなり、角度分解能が向上します。仮想配列を理解するには、次の2つの量を計算する必要があります。 仮想配列内の仮想素子の数 仮想配列内の素子の位置 仮想アンテナ素子の数と解像度 NTX送信素子とNRX受信素子を含む平面仮想アンテナ配列内の仮想素子の数は次のとおりです。 この数値は、配列の最大解像度に関係するため重要です。速度と距離の解像度が角度解像度の影響を受けるレーダーシステムでは、レーダーで画像を形成できるレベルまで解像度を向上させるために多大な努力が払われてきました。従来の 3-TX/4-RX直列給電パッチアンテナ配列は、レーダー画像に必要な解像度を提供するのに十分な解像度を備えていないため、これらのシステムのアンテナ数を増やすことに重点が置かれています。 MIMO仮想配列として動作する場合、配列全体の角度分解能は、次のように単一のアンテナの角度分解能に関連しています。 このことは、より小型の機器に搭載する仮想アンテナ配列ゲイン計算機のサイズを大きくしようという動きを示しています。配列の数が多いほど解像度が向上し、ゲインが高くなるので、より低い電力や広い通信距離でシステムを運用できる可能性があります。 同様に、スキャン範囲は、仮想配列内の仮想素子間の等価距離によって制限されます。従来の回折限界発光パターンが必ずしも成立しないスパース配列では、仮想配列もスパースとなり、解像度が上式に従わなくなります(このことは、「同じ場所に配置すること」を厳密に定義する必要性を強調しています)。 配列ゲイン
RF設計ソフトウェア 高周波基板用に最高のRF設計ソフトウェアを使用します 高周波数とデジタルインターフェイスに対応する無線周波数システムの設計は難題であり、最適なRF設計ソフトウェアツールが必要です。高GHz帯のRFエンジニアリングは、最高のRF設計ソフトウェアを援用して、正確な基板トレース配線、レイヤスタック設計、および回路設計を保証します。Altium DesignerをRF設計プロセスに使用して、次のGHz帯システムを製造に移行します。 Altium Designer 回路設計機能、強力なPCBエディタ、 RFエンジニアリング専門家向けのシミュレーション機能を備えた統合回路基板設計アプリケーション。 多くの電子部品製造エンジニアはデジタル設計のコンセプトに精通していますが、 RF設計に特異な点についてはどうでしょうか。高周波で動作し、基板上のデジタルインターフェイスで動作するRFシステムでは、適切な手順が実行されない限り信号品質が低下するシグナルインテグリティの問題が、多数発生する可能性があります。最高のRF設計ソフトウェアを使用する設計者は、RFシステム用の最適な基板レイアウト技法に従うと同時に、最良のシミュレーションおよび分析機能によってシステムを評価することができます。GHz帯周波数に対応するRF基板を設計する必要がある時は、業界最高のデジタル、RF、および混在信号設計ソフトウェアである Altium Designerのような総合設計プログラムを使用します。 RFエンジニアリングにおける正確な回路設計 すべての新規の電子システムは回路設計として始まり、電子部品製造エンジニアはRFエンジニアリングのための強力な設計とシミュレーションのツールを必要とします。RF回路設計では、高周波数で動作でき、またシステムの構築、および実際のコンポーネントを使用して設計を評価できるシミュレーションが必要です。フィルタやマッチングネットワークなどの回路を経由した信号伝播を理解するには、システムレベルのデザインアプローチが必要です。すべてのソフトウェアツールがこれらのタスクに対応できるわけではなく、多くの設計者は、フィールドソルバーを回路設計エディタおよびSPICEシミュレーターと組合せてRF設計を作成せざるを得ません。 必ず、統合されたコンポーネントライブラリと基板サプライチェーンへの接続を備えた最適な回路設計ツールを使用してください。Altium Designerの回路図エディタには、 SPICEシミュレーションの標準コンポーネントモデルに対応する強力なSPICEシミュレーションエンジンが搭載されています。1つのプログラムですべてにアクセスできるため、高品質の電力コンバータを設計し、その設計を迅速かつ容易に検証できます。 混在信号の設計とシミュレーションのツールを備えたRF設計ソフトウェア Altium Designerには、 RF回路設計および分析に使用するシミュレーションモデルを使って、非常に多くの実際のコンポーネントにアクセスできる最高の回路図エディタが付属します。設計者は、 RF設計プロセスを効率化すると同時に、システムレベルのデザインと分析を支援できます。Altium
NVMe M.2 PCIe コネクタ スタブ PCIeコネクタ上のスタブに関する簡単な研究 スタブは、高速PCB設計において重要な話題であり、高速デジタル相互接続の全てのビアからスタブを常に取り除くべきだという長年のガイドラインがあります。スタブは高速ラインにとって悪いものですが、必ずしも取り除く必要はありません。より重要なのは、損失プロファイルと周波数を予測し、そのような損失を防ぐために適切にフロアプランを立てることです。 この記事では、Altium Designerに同梱されているMiniPCの例題プロジェクトを使用して、高速PCB上でのPCIeルーティングに関するいくつかのシミュレーション結果を見ていきます。問題となるシミュレーションでは、コネクタから出るPCIeレーンのSパラメータを計算します。これらのシミュレーション結果を見ることで、スタブがビアやコネクタの遷移においてシグナルインテグリティにどのように影響を与えるかを、シミュレーションの観点から理解するのに慣れていない設計者が、適切なコンポーネント選択、配置、およびルーティングの選択を行うのに役立ちます。 スタブとPCIeルーティングにおける潜在的な問題 PCIeルーティングでは、レーンはAC結合キャパシタを備えた差動ペアとしてルーティングされます。これらの差動ペアをコネクタを通して周辺機器、例えば拡張カードに接続することが一般的です。これらの拡張スロットコネクタを通してルーティングする過程で、最大帯域幅を制限する可能性のあるライン上に残余スタブが存在する場合があります。これはシミュレーションで非常に正確な結果を得ることができ、PCIeチャネルの正確な帯域幅を特定することができます。 高速伝送線上のスタブは、PCIeレーン上で高周波インピーダンストランスフォーマーのように振る舞うことができるため、損失や反射を引き起こす可能性があります。 この記事でスタブ分析についてさらに読む。 PCIeレーン上のスタブを制限することが推奨されていますが、アドインカードやモジュールにルーティングするために使用されるコネクタ上に存在する可能性があります。例として、垂直に取り付けられたPCIeアドインカード用のエッジコネクタはスルーホールコンポーネントであり、コネクタと同じ層上でルーティングする際に使用可能な信号帯域幅を制限する役割を果たす可能性があります。特にキャパシタの配置を考慮する場合、反対側の層でのルーティングが好ましいかもしれません。 PCIeレーンのコネクタスタブ損失の例 信号がビアスタブを通過する際に発生する干渉効果や、PCIeレーンに沿ってDCオフセットを除去するためのコンデンサが必要であるため、コネクタを介してルーティングする際にビアスタブが損失にどの程度影響を与えるかを研究する価値があります。 問題のMiniPCボードは、以下に示すように、PCIeインターフェースを備えたArria 10 FPGAを使用し、スロットコネクタにルーティングされています。 以下の分析に必要な他の重要な仕様は、ボードの厚さと 誘電率です: ボード厚さ = 2.028 mm 全層でDk
モンテカルロはSPICEです TRANSLATE:

SPICEにおけるモンテカルロ法の基礎:理論とデモ
PCBにコンポーネントを配置するときは、まるで賭けをしているようなものです。すべてのコンポーネントには許容差があり、その中には非常に精密なもの(例えば、抵抗器)もありますが、名目値に対して非常に幅広い許容差を持つコンポーネントもあります(例えば、ワイヤーワウンドインダクターやフェライトなど)。これらのコンポーネントの許容差が大きくなりすぎた場合、これらの許容差が回路にどのような影響を与えるかをどのように予測できるでしょうか? 名目上の電気的値(電圧、電流、または電力)の周りで変動を手計算で計算することはできますが、特に大規模な回路では、これらの計算を手作業で行うのは非常に時間がかかります。しかし、SPICEシミュレーターは、これらの質問に答えるのに役立つ、確率論から借用した非常に便利なタイプのシミュレーションを提供しています。このタイプのシミュレーションはモンテカルロとして知られており、Altium DesignerのSPICEパッケージでこのシミュレーションを実行することができます。 この記事では、モンテカルロシミュレーションを理解し構築するために関わる理論の概要を提供し、次に電力レギュレータ回路の例示結果と、許容差によって結果がどのように影響を受けるかを示します。モンテカルロシミュレーションは、回路の動作に関する統計を取るために使用できる多くのデータを生成し、これにより製品がコンポーネント値の許容差によって仕様を満たす可能性が高いかどうかをよく理解できます。 SPICEシミュレーションにおけるモンテカルロ モンテカルロシミュレーションは、シンプルなプロセスに基づいて動作します:ランダムに一連の数字を生成し、そのランダムな数字を数学的モデルに使用して何か有用なものを計算します。SPICEでモンテカルロシミュレーションが使用される場合、シミュレーションは定義した許容差を使用して回路内のコンポーネント値をランダムに生成します。それから、これらランダムに生成されたコンポーネント値を使用して標準のSPICEシミュレーションを実行します。このプロセスは複数回(時には100回以上)繰り返され、コンポーネントの許容差によって回路の挙動がどのように変化するかを説明するデータセットを提供します。 SPICEパッケージは、モンテカルロシミュレーションをシンプルなプロセスを通じて実装します。これにはランダムな数の生成と、標準SPICEアルゴリズムでの電圧と電流の計算が含まれ、その後、結果を表またはグラフで表示します: ランダムな変動を経験させたいコンポーネントを選択し、そのコンポーネントの許容差を定義します。 コンポーネントの許容差に対する分布を選択します(ガウス分布が最も一般的に使用されます)およびシミュレーション実行の回数。 SPICEシミュレータは、スキーマで定義された名目値とステップ2で定義された許容差/分布を使用して、ランダムなコンポーネント値を生成します。 SPICEシミュレータは、ステップ3のランダムなコンポーネント値を使用して、回路内の各点での目標電圧/電流/電力を計算します。 ステップ3と4は、希望するシミュレーション実行回数に達するまで繰り返されます。 ステップ5の結果は、さらなる検査や分析のためにグラフまたは表にまとめられます。 例:電圧レギュレータのモンテカルロシミュレーション 次の例では、以下に示すバックコンバータ回路を使用しました。この回路は、主要セクション(L1)で比較的大きなインダクタを使用し、出力にLフィルタを続けてスイッチングノイズをさらに減らします。出力キャパシタには、過渡応答の強度を減らし出力電圧を滑らかにする スナバ抵抗があります。 この回路は、入力された25Vを約6.75Vまで降圧することを目的としています。私のシミュレーションでは、インダクタの値が最大30%変動することを許容し、15回の実行を行います。この大きな変動は、一部のワイヤーワウンドインダクタやフェライトで見られるもので、このような大きな変動を使用することで、リップルやオーバーシュートの極端な値がどのようになるかを確認できます。 インダクタが変動する部品である別の理由は、コンバータが 連続伝導モードで動作しているときに、出力リップルの 主要な決定要因であるからです。さらに一歩進んで、最悪の電気的挙動を本当に確認する必要がある場合は、インダクタ電流自体を見て、インダクタ電流が連続伝導にどれだけ近づくかを確認することもできます。