Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
シミュレーション
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
SPICE: Certainty for All Decisions
Design, validate, and verify the most advanced schematics.
Learn More
シミュレーションと解析
Highlights
All Content
Filter
Clear
ニー周波数の式はどこから来たのか?
ニー周波数は信号帯域幅とは関係ありませんが、チャネル帯域幅とは全てが関係しています。
パワーアンプ用バイアスTの設計方法
バイアス・ティーは、特定のラインに沿ってACとDCの電力を分離するために、一部のRFシステムで使用されます。この記事でバイアス・ティーの設計についてもっと学びましょう。
ポール・ゼロ解析と回路設計における過渡解析
以下は、過渡解析の一部としての極-零点解析が、過小減衰応答、ゼロ出力周波数、その他多くの点を特定するのにどのように役立つかを説明します。
PCBパワーインテグリティーの完全ガイド: 基板からパッケージまで
この記事では、PCB からパッケージまでのすべてを含む、パワーインテグリティーの完全な概要を説明します。
RF設計者向けのマイクロストリップパッチアンテナ計算ツール
マイクロストリップパッチアンテナは、設計と製造が簡単で、かなり高い周波数まで使用できるのが特徴です。
電子製品の設計を推進する今日のPCB設計者
プロの設計者は、自分たちが電子製品の開発プロセスで重要な役割を担っていることを知っています。回路基板なしでは、すべての半導体が無意味になり、私たちが享受する最新の体験を提供できなくなります。PCB設計者は製品開発プロセスで非常に重要な役割を担いますが、製品開発ツールに関してはいまだに不利な立場に置かれています。PCB設計ソフトウェアは物理的なレイアウトの構築には優れていますが、その機能が製品開発全体に拡張されるのはまだまだ時間を要します。 では、業界は製品開発でより重要な役割を果たすPCB設計者をどのようにサポートできるのでしょうか?Altiumでは、システムレベルに注目し、製品開発プロセス全体で設計者がより一層関与するためのツールを作成する方向へと徐々に移行しています。よく言われているように、段階的に進むエンジニアリングの時代は終わり、現在最も成功している製品は、共同プロセスで構築されています。 PCBを超えた製品設計に関係するものとは 製品設計のアイデアそのものが明白でなければなりません。システム全体を総合的に検討することが重要であり、システム内の主要コンポーネント間の関係を設計することで目標が達成されます。たとえば、筐体やHMI要素によってPCBへの配置やEEの部品選定が進み、基板やコネクタの数によってハーネスの必要性が生じ、シミュレーションの結果によってアセンブリの配置や材料の選定が影響を受けるといったように、システムで考えられる設計上の関係は非常にたくさんあります。 筐体 PCBとそのコンポーネントは、望ましいユーザー体験を作り上げるために重要ですが、ユーザーが実際に取り扱うのは筐体です。そのため当然のことながら、筐体はユーザー体験がアクセシブルな、心地よい美学を備えている必要があります。また、すべてのコンポーネントとサブシステムを1つのパッケージに収容する必要がありますが、このシンプルな要件がPCBレイアウトに深刻な制約を課すことになります。 マルチボードシステム 単一の基板またはコンポーネントに依存する製品は少なくなり、多くの製品はライフサイクル全体で静的な状態を維持しなくなります。多くの製品は、複数のコンポーネントやサブシステムに依存しており、その中には電気的、機械的に相互接続しなければならない複数のPCBが含まれます。MCADアプリケーションでは、機械設計者がECADの共同作業者と協働するための2つのアプローチがあります。 古い方法: 各基板をSTEPモデルとしてエクスポートし、これらをMCADユーザーに共有/メールし、MCADアプリケーションにインポートして機械バックチェックを行います。 新しい方法: ECAD/MCADコラボレーションが統合され、MCADユーザーはファイルをエクスポートすることなく、単一のシステムとしてすべての基板にアクセスできます。 多くの企業は、製品の機械設計を可視化するために電気設計者と機械設計者が今でもファイルをエクスポートし合っています。Altium 365は、MCADユーザーとECAD ユーザーが安全なオンラインプラットフォームを通じて直接協働できるように、クラウドを使ってMCAD CoDesigner拡張機能をプロビジョニングすることで、この問題に対処しました。 Altium Designer向けMCAD CoDesignerの詳細について 新しいアプローチとは、基板間に論理定義を適用し、PCB
Pagination
First page
« First
Previous page
‹‹
ページ
4
現在のページ
5
ページ
6
ページ
7
ページ
8
ページ
9
Next page
››
Last page
Last »
他のコンテンツを表示する