Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Courses & Certificates
Training Previews
On-Demand
Instructor-Led Trainings
大学・高専
Programs
Educator Center
Student Lab
Altium Education Curriculum
オンラインストア
Search Open
Search
Search Close
サインイン
Octopart
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Octopart
Overview
All Content
Filter
0 Selected
Clear
×
Clear
企業がローカルおよびアウトソーシングされた製造業務をどのように管理しているか
今日のグローバル化した経済において、多くの企業は、ローカルとアウトソーシングされた製造オペレーションの混合モデルを活用しています。このアプローチにより、コスト効率、品質管理、柔軟性の両方の強みを活かすことができます。
新しいグローバル半導体共同投資プログラム
世界中での半導体共同投資プログラムの追求;2024年IEEE電子部品・技術会議(ECTC)の振り返り
米国、中国製チップに対する関税を100%引き上げることを実施
バイデン政権が最近発表した、特に半導体チップを含む中国からの輸入品に対する大幅な関税引き上げは、電子業界に衝撃を与えました。
ABFはICパッケージングサプライチェーンにおける重要な失敗点であり続けている
半導体産業は、供給チェーンにおいて成長する課題に直面しており、今日話題にするのはチップ自体ではありません。高性能プロセッサの生産において重要な役割を果たすアジノモト・ビルドアップ・フィルム(ABF)が、潜在的なボトルネックとなっています。最先端の電子機器への需要が急増し続ける中、ABF基板市場はそのペースに追いつくのに苦労しており、チップメーカーとその顧客にとって不安定な状況を生み出しています。 半導体製造におけるABFの重要性 IC基板で最も一般的に使用される材料であるABFは、集積回路とプリント回路基板の間の重要なリンクとして機能し、電気絶縁、熱放散、および信号分配を提供します。1999年に アジノモトによって初めて導入されたABFは、そのユニークな特性のために高性能プロセッサのパッケージングにおける 選択材料としてすぐに広まりました。エポキシ樹脂と無機フィラーで構成されるこのフィルムは、優れた寸法安定性を提供し、 先進的な製造技術を通じてマイクロスケールの回路の作成を容易にします。 現代の電子機器におけるABFの重要性は、過小評価できません。CPU、GPU、SoCなどの先進的なコンポーネントを搭載するスマートフォン、コンピュータ、データセンター、そして増え続ける車両のパッケージングにおいて、第一選択の材料です。細い線幅をサポートする能力と、付加プロセスとの互換性が、高密度インターコネクト(HDI)および超高密度インターコネクト(UHDI)PCBの製造に不可欠とされています。 ABF需要と市場の成長 過去数年間でABF市場は顕著な成長を遂げています。 Thornburg Investment Managementによると、2020年の8億3250万ドルから2028年には30億1000万ドルへと成長すると予測されており、これは約17.43%の複合年間成長率(CAGR)を反映しています。このABFの急速な成長は、主に半導体産業によって推進されていますが、 超高密度インターコネクト(UHDI)PCBも成長の原動力となるでしょう。 ABF需要の増加を促す5つの要因 ABF需要の成長を促進しているいくつかの要因があります: ミニチュア化:より小さく、より強力なデバイスへの絶え間ない追求は、ABF需要の主要な推進力です。コンポーネントが縮小するにつれて、より高い密度と細かいピッチを扱うことができる先進的なパッケージングソリューションの必要性が高まります。例えば、現代のスマートフォンは、ポケットサイズのデバイスに初期のスーパーコンピューターよりも多くの計算能力を詰め込んでいます。このようなミニチュア化のレベルは、ABFのような先進的なパッケージング材料を使用することでのみ可能であり、これにより、そのようなコンパクトな設計で必要とされる複雑な相互接続が可能になります。 5G技術:5Gは、大量のデータを高速で処理できる先進的な半導体を必要とします。ABF基板は、これらのチップをパッケージングする上で重要であり、5Gが約束する超高速、低遅延通信を可能にします。ABFの優れた電気的特性は、信号の整合性が重要な5Gアプリケーションに適しています。5G対応デバイスやインフラストラクチャの展開が続くにつれて、これらのアプリケーションでのABFの需要は大幅に増加すると予想されます。 持続可能性:ABFは、より効率的な設計をサポートし、全体的な材料使用量を削減できる能力のため、従来の材料と比較してより環境に優しいオプションと考えられています。ABF基板は、消費電力が少ない効率的なチップ設計を可能にすることで、持続可能性にも貢献します。これにより、携帯型デバイスのバッテリー寿命が延び、データセンターやその他の大規模コンピューティング設備の全体的なエネルギー消費が削減されます。 電気自動車(EV):現代のEVは、バッテリー性能から自動運転まで、あらゆることを管理するために多数のセンサーやプロセッサーに依存しています。これらのアプリケーションに必要な高性能チップは、しばしばそのパッケージングにABF基板を使用しています。高度運転支援システム(ADAS)や自動運転技術には、洗練されたプロセッサーが必要です。これらの複雑で高電力のチップをサポートできるABFの能力は、EV技術の進歩を可能にする重要な要素です。 人工知能:AIの爆発的な成長も、ABFへの需要を高める強力な力です。AIアクセラレーターや特殊な機械学習プロセッサーは、チップ設計の限界を押し広げ、熱の放散と信号の整合性を管理するために高度なパッケージングソリューションを必要とします。ABF基板は、これらの最先端のアプリケーションにおいてしばしば選択される材料であり、さらに材料への需要を促進しています。
新しいEU 2025 待機電力消費基準
欧州連合(EU)は、2025年に電子機器の新しい待機電力基準を導入する準備をしています。これらの規制により、多くの種類の製品に対して待機電力消費が大幅に削減されることが求められます。その目的は、エネルギーコストを数十億ドル節約し、さらには毎年数百万トンのCO2排出量を削減することです。 EUは長年にわたり、エネルギー効率と環境持続可能性の取り組みや立法において世界をリードしてきました。EUがますます注目しているのは、電子機器やデバイスの待機電力消費—時には「ファントムロード」や「ヴァンパイア電力」とも呼ばれる—です。 なぜ待機電力に焦点を当てるのか? 一つのデバイスの待機電力消費を見ると、それほど大きな問題には見えません—多くのデバイスで月に1kWh未満です。しかし、全体像を見て、今日使用されている数百万台のデバイスを考慮に入れると、待機電力は家庭やビジネスで使用される電気の大きな部分を占めることがわかります。待機電力は、先進国における全体の電気使用量の最大10%を占めると推定されています。このような無駄遣いは、すべての人々の電気代を高くし、環境に害を及ぼす炭素排出を増加させます。 2025年基準:より厳しい制限、範囲の拡大 2023年4月に発表された、 EUの新しい2025年の待機電力基準は、2025年5月9日に施行される予定です。これらの基準は、待機モードのデバイスに対してより厳格な要件を設定し、現行の法律よりも多くの製品カテゴリに適用され、より厳格なテストと報告手順を要求します。この規制は、製造業者が よりエネルギー効率の高い製品を設計するよう促し、ヨーロッパのより大きな気候目標に向けて積極的な貢献をすることを目的としています。 待機電力要件は、EUの 持続可能な製品のためのエコデザイン規制(ESPR)の一環です。この規制は、製品の設計および製造から最終的な廃棄に至るまで、製品の環境性能基準を設定します。ESPRの下では、EUで販売されるすべての電子製品は、待機電力を含む多くの分野で特定の基準を満たさなければなりません。 待機電力許容量の削減 現行の規制によると、デバイスの許容待機電力消費量は最大1Wです。新しい2025年の規制によると、これらの基準によって規制されるデバイスは、待機またはオフモードで0.5W以上を使用することはできません(これは2027年にさらに厳しくなり、最大0.3Wまで引き下げられます)。デバイスが待機モード中にアクティブなディスプレイ画面を持っている場合、制限は0.5Wではなく0.8Wです。 「ネットワーク待機」モードを持つデバイスにも新しい制限が適用されます。つまり、製品がアクティブに使用されていないときでも、デバイスはネットワーク接続(例えば、Wifi)を維持します。これらのデバイスの現在の最大消費電力は、製品タイプによって3Wから12Wの範囲です。新しい2025年の基準は、この許容量を2Wから8Wに減らし、よりエネルギー効率の高いネットワーキング技術の開発を促進することを意図しています。 より広範な製品カテゴリのカバレッジ 2025年のアップデートでは、EUの待機電力使用規制がこれまでよりもはるかに多くの製品カテゴリーに拡大されます。これは、現行の規制に含まれていない多くの種類の電子機器が、家庭やビジネスの両方で非常に一般的になり、全体の待機消費電力による電気使用量に大きく貢献するようになったためです。 現在、規制は家庭用電化製品やオフィス機器、例えばテレビセット、コンピュータ、キッチン機器などに焦点を当てています。新しい2025年のガイドラインの下では、スマートスピーカー、ゲームコンソール、モーターで動作する家具、自動カーテンやブラインド、およびスマートホーム/スマートオフィス環境で使用されるその他のデバイスなど、追加の製品カテゴリーが含まれるようになります。 変更と関連するエネルギー節約のいくつかの例を以下に示します: 現行の規則が適用されるテレビは、現在、待機電力使用が最大1Wに制限されています。新しい2025年の基準ではこれを半分の0.5Wに削減し、毎日20時間待機状態にあるテレビ1台あたり、年間で推定3.65kWhのエネルギー節約が見込まれます。 スマートスピーカーは、現行の規制には含まれていないが、2025年のガイドラインには含まれることになる製品の例です。現在、ほとんどのスマートスピーカーはスタンバイモードで約2-3Wを使用しています。新しい規制では、これを大幅に削減し、0.5W以下にすることが求められます。これにより、デバイスごとに年間約17.5kWhの節約が見込まれます ゲームコンソールも新しい規制の対象に含まれます。現在、これらは一般に休止モードで10-15Wを消費していますが、拡大された2025年のガイドラインでは、ネットワークスタンバイ時にはこれらのデバイスが2Wのみを使用することが許可されます。この変更により、コンソールごとに年間約100kWの節約が見込まれます。
Engineering News
デジタル技術とIoT統合によって電子部品供給チェーンがどのように変革しているか
今日の市場で競争力を維持するためには、新しい技術を採用し、供給チェーンをデジタル化することが不可欠です。この急速に変化する世界では、デジタルとIoT(モノのインターネット)によって電子部品の供給チェーンが大きく変化しています。これは単なるトレンドではなく、透明性、効率性、リアルタイムの可視性への需要が高まる中での必要性です。 供給チェーンがどのように変化しているのか、そしてそれが電子部品業界に何を意味するのかを見ていきましょう。 供給チェーンのデジタル化とは、デジタル技術を使用して供給チェーンのプロセスを簡素化し、改善することです。これは、正確性、速度、信頼性が重要な電子部品業界にとって鍵となります。 電子部品の供給チェーンにおけるデジタル化を推進する主要な技術をいくつか見てみましょう。 ビッグデータ分析: ビッグデータ分析を利用することで、企業は膨大なデータを処理し、電子部品の供給チェーンに関する洞察を得ることができます。データ駆動は、意思決定、予測、リスク管理を可能にします。 大手電子機器会社のサプライチェーンマネージャーが、ビッグデータ分析を活用してサプライチェーンの運用を効率化していると想像してみてください。サプライチェーンマネージャーは、毎日、販売予測、顧客フィードバック、ソーシャルメディアのトレンド、市場レポートなど、さまざまなソースから膨大な量のデータを受け取ります。 ビッグデータ分析を使用することで、サプライチェーンマネージャーは次のシーズンにどの製品が高い需要を持つかを予測できます。例えば、スマートホームデバイスへの需要の上昇傾向を示すデータがある場合、サプライチェーンマネージャーはこの需要を満たすために十分な部品を会社が注文することを確実にできます。これにより不足を防ぎ、顧客を満足させます。 さらに、サプライチェーンマネージャーは、納期を追跡し、潜在的な遅延を特定するために、供給者からのデータを監視します。もし供給者が一貫して遅れている場合、サプライチェーンマネージャーは生産に影響を与える前に、より信頼性の高い供給者に切り替えることができます。 サプライチェーンマネージャーは、データを使用して物流を最適化することもあります。輸送ルートと配送時間を分析することで、製品を出荷する最も効率的な方法を見つけ出し、コストを削減し、配送を速めることができます。 本質的に、ビッグデータ分析を活用することで、情報に基づいた決定を行い、会社のサプライチェーンが効率的で、コスト効果が高く、市場の変化に対応できるようにすることができます。 人工知能(AI)と機械学習(ML): バイヤーとして、過去の購買注文やサプライヤーのパフォーマンス、市場のトレンドや顧客の需要など、膨大な量のデータを毎日管理しています。これを効果的に扱うために、先進のAIやML技術を活用することができます。 まず、AIシステムを使用して、部品購入、生産スケジュール、市場のトレンドに関する過去のデータを分析します。パターンやトレンドを認識することで、今後数ヶ月間で需要が高まり、リードタイムが長くなる電子部品を予測するのに役立ちます。例えば、AIが成長トレンドを検出した場合、センサーやマイクロコントローラーなどの関連部品の注文を増やすように警告します。 次に、新しいデータから学習することで、需要予測を継続的に改善するためにMLアルゴリズムを利用できます。システムが処理するデータが多ければ多いほど、将来の部品ニーズを予測する能力が向上します。特定のタイプの電子部品の販売が予想よりも速く増加している場合、MLモデルは将来の注文を調整して不足を防ぎ、需要を満たすことができます。 AIによるツールは、サプライヤー管理にも役立ちます。さまざまなサプライヤーからのパフォーマンスデータを分析することで、AIシステムはリードタイム、輸送時間、製品品質などの要因に基づいて、最も信頼性の高いサプライヤーを特定するのに役立ちます。サプライヤーに遅延や品質問題の兆候が見られる場合、AIは調達プロセスがスムーズに進むように代替のサプライヤーを提案することができます。 さらに、AIを使用して物流と調達戦略を最適化することができます。AIシステムは、部品の配送に最適なルートを見つけ出し、船便の運賃を比較し、生産ニーズに合わせて配送をスケジュールし、リソースをより効率的に割り当てるのに役立ちます。これにより、輸送コストを削減するだけでなく、部品が生産に間に合うように到着することも保証されます。 最後に、MLモデルは調達機器の予測保守に役立ちます。調達プロセスで使用される機械やシステムからのデータを分析することで、これらのモデルは機器が故障する前にメンテナンスが必要であることを予測します。この先見の明のあるアプローチにより、ダウンタイムが減少し、調達プロセスが効率的に運営され続けます。 ブロックチェーン: ブロックチェーン技術は、電子部品のサプライチェーンを通じた動きを追跡するための安全で透明な方法を提供します。これにより、部品の真正性を保証し、偽造のリスクを低減し、関係者間の信頼を築くのに役立ちます。
Pagination
First page
« First
Previous page
‹‹
ページ
11
現在のページ
12
ページ
13
ページ
14
ページ
15
ページ
16
Next page
››
Last page
Last »
💬
🙌
Need Help?
×
📞
1-800-544-4186
📞
1-858-864-1798
✉️
sales.na@altium.com
🛟
Support Center
🎓
Training Support
📣
Ask Community
📞
Contact Us