PCB Design and Layout

Create high-quality PCB designs with robust layout tools that ensure signal integrity, manufacturability, and compliance with industry standards.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
クラウドコラボレーションで電子機器のライフサイクルを管理しましょう クラウドコラボレーションで電子機器のライフサイクルを管理しましょう 1 min Blog 電子製品のライフサイクルは、コンポーネントのライフサイクルに大きく依存しているという点で興味深いものです。この関係にもかかわらず、すべての電子製品のライフサイクルは他の製品と同様の軌道をたどります。新製品は初期採用から始まり、後に持続的な成長を経てピーク採用に達し、より優れた機能を持つ新製品が登場すると徐々に衰退します。この事実を受け入れると、各フェーズの電子製品ライフサイクルを利用して、設計とビジネス戦略を計画する方法を決定できます。 もしチームが新製品に取り組んでおり、製品のライフサイクルをコントロールしたい場合、2種類のライフサイクルの可視性が必要です:完全なサプライチェーン情報と製品ライフサイクル管理です。Altium DesignerをAltium 365プラットフォーム上で使用することで、チームは電子製品ライフサイクルの両側面を見ることができます。製品ライフサイクルのこれらの側面についてどのように考え、なぜチームがこの可視性を必要とするかをここで説明します。 電子製品ライフサイクルに何が影響を与えるのか? エレクトロニクスのライフサイクルは、いくつかの理由で短くなっています。エレクトロニクスにおいて、製品のライフサイクルは部分的にはその機能を実現するコンポーネントのライフサイクルに依存します。製品の寿命を通じて長いライフサイクルと再設計の回数を少なくすることを望む設計チームは、NRNDまたは廃止されたコンポーネントの原因を理解しています。これはビジネス上の問題でもあります:製品がコンポーネントの廃止とは無関係な理由で突然廃止されることがあります。 急速な技術開発と消費者の注意が短くなるこれらの日々において、任意の製品のエレクトロニクスのライフサイクルを予測することは難しくなります。ここでは、電子製品のライフサイクルに影響を与える要因のいくつかを紹介します: 消費者の需要。これはビジネス上の問題であると同時に設計上の問題でもあります。消費者の好みは時間とともに変化します。 競合製品のリリース。競合が市場シェアを脅かす製品をリリースすると、あなたの設計は適応する必要があります。これはハードウェアレベルでの変更を強いるかもしれず、再設計を引き起こす可能性があります。 コンポーネントの廃止。製品のコンポーネントがNRND廃止された場合、製品を大規模に生産し続けるためには製品を更新する必要があります。または、完全に新しい製品に置き換えるべきです。 新しいコンポーネントはより多くの機能を提供します。この点と前述の陳腐化に関する点は相互に排他的ではありません。しかし、コアコンポーネントの新しいバージョンが利用可能になると、設計中の現行コンポーネントが陳腐化するリスクが高まります。新しいバージョンが利用可能であれば、コンポーネントがNRND(新規設計非推奨)になる可能性がありますが、完全に廃止される前に生産が続けられることもあります。 下の画像では、進行中のプロジェクトの最近のリビジョンに対してActiveBOMドキュメントを開きました。設計プロセスの早い段階でサプライチェーンを確認しなかったため、在庫切れのコンポーネントやいくつかの陳腐化したコンポーネントを交換する必要がありました。デザイナーは、すでにシンボルとフットプリントを持っていた信頼できるコンポーネントに固執しました。幸いにも、これらの陳腐化したコンポーネント(下のショットキーダイオードを参照)はすべて標準的なパッケージングを持っていたので、再設計は迅速に進みました。もっと悪い状況になり得ました;中心的なSoCが陳腐化していた場合、私たちは(ボードとファームウェアのレベルで)大幅な再設計に直面していたでしょう。 このデバイスの長期ライフサイクルは短く、NRNDおよび陳腐化したコンポーネントが含まれています。製品を繰り返しリリースする場合、設計チームはその寿命を延ばすために代替コンポーネントを選択する必要があります。 この製品の再設計はどの程度広範囲にわたる必要がありますか?これはオープンな質問です。標準パッケージの受動部品のような単純なコンポーネントの場合、再設計はそれほど広範囲には及びません。熟練した設計者であれば、これらを比較的迅速に実装できます。SMD受動部品は標準パッケージで提供される傾向があるため、回路図とPCBレイアウトで代替コンポーネントを簡単に交換することができます。ICやSoCの場合、デバイスにコンパイルする任意のコードの前方互換性をコンポーネントメーカーに依存しなければならないため、巨大なリスクを負うことになります。コンポーネントがもはや調達できなくなるまで待つのではなく、適切な代替品に今すぐ交換する方が良いでしょう。 特殊なIC、特殊なSoC、センサー、またはその他のコンポーネントを備えた組み込みシステムの場合、必要とされる再設計はより広範囲に及び、製品のファームウェアにまで及ぶことがあります。標準的なIP(例えば、Arm Cortexコアで動作するMCU)を使用するよく知られたベンダーを選択している場合、ファームウェア開発に必要なライブラリは小さな変更で済むため、再設計や開発作業の範囲が縮小されます。 クラウドで電子機器のライフサイクルを管理する チームの全員が早期にコンポーネントのライフサイクル情報にアクセスでき、設計のライフサイクルステータスを追跡できるようにすることで、リデザインを予測する管理プロセスを作成できます。これは、適切なクラウド協業ツールを使用して、設計データをチーム全員と共有することにかかっています。 チーム全員が製品およびコンポーネントのライフサイクルの可視性を必要とする場合は、Altium 365上のAltium 記事を読む
12V DC 無停電電源装置 12V DC 無停電電源装置 1 min Altium Designer Projects PCB設計者 PCB設計者 PCB設計者 私は、強風や嵐の際に断続的に電力供給が不安定になる田舎の村に住んでいます。そのため、私のコンピューター、サーバー、ネットワーク機器はすべて、比較的低コストの無停電電源装置(UPS)に接続されています。これらはすべて密閉型鉛蓄電池を使用しており、Raspberry PiやインターネットルーターなどのDCデバイスを電源供給する方法としては特に効率的ではありません。なぜなら、入力されるAC(交流)がDC(直流)バッテリーを充電し、その後、インバーターを介してAC電力を生成し、AC-DCコンバーターがDCデバイスに電力を供給するからです。ADSLルーターを全体のAC UPSに頼るのではなく、小型のUPSを作ってみるのも面白いと思いました。 私のADSLルーターは12V/1Aの電源を持っていますが、内部的にはおそらく1.8-3.3vで動作しているにもかかわらずです。このプロジェクトでは、12V 1AのUPSを作成します。いつものように、オープンソースのAltium Designerプロジェクトファイルは GitHubで、MITライセンスの下でライセンスされています。このライセンスは、基本的に設計に対して好きなことをすることを許可します。ライブラリファイルを探している場合、このプロジェクトは私の Open Source Altium Designer Libraryを使用して設計されました。 上記は、 Altium 365 Viewerで読むことになるPCB設計です。これは、設計を表示したりボタンをクリックするだけでダウンロードできる機能を備え、同僚、クライアント、友人と繋がる無料の方法です!設計を数秒でアップロードし、重たいソフトウェアや高性能なコンピューターなしで詳細に深く見るためのインタラクティブな方法を持つことができます。 バッテリー 鉛蓄電池はエネルギーのワット時あたりのコスト効率が非常に高いですが、もう少し現代的でコンパクトで軽量なものを作りたいと思います。私のUPSには、優れたエネルギー密度、放電率、比較的高速な充電能力を提供する18650リチウムポリマーセルを2つ使用します。次のプロジェクトにバッテリーを使用する予定があるなら、OctoPartでの私の記事 プロジェクト用のバッテリー化学を選択するをぜひご覧ください。18650セルは鉛蓄電池と比較してワット時あたりのコストが比較的高いですが、私のUPSには大きな負荷はかかりません。 LG 記事を読む
Altium 365 ライブラリ移行:その仕組みと利用すべき理由 Altium 365 ライブラリ移行:その仕組みと利用すべき理由 1 min Blog ライブラリは、PCB設計プロジェクトの基礎です。それらがなければ、カスタムフットプリントを読み込んだり、回路図のシンボルにアクセスしたり、PCBプロジェクトに必要な他の多くのことを行うことができません。プロジェクトや既存のコンポーネントデータをチームと共有する必要がある場合、長いメールのやり取りをせずに必要なデータを得る最も簡単な方法は何でしょうか? Altium 365を使用する前は、Slack、メール、FTPサーバー、Dropbox、Skype、さらにはGoogle Driveをデータストレージとして使用していました。これらのツールは、リモートワークやコラボレーションのエコシステムでそれぞれに役割がありますが、コンポーネント、ライブラリ、その他のデータの追跡を非常に困難にします。DropboxアカウントやFTPサーバーにファイル名を変更してアップロードすると、追跡が不可能になる新しいバージョン履歴が作成されてしまいます。 Altium 365のデータ共有ツールを使用すると、すべてのコンポーネントを単一のリポジトリに簡単に配置できます。これには、Octopart、パーツ作成サービス、またはGitHubリポジトリからダウンロードした可能性のある製造元のCADモデルが含まれます。その後、チームの他のデザイナーがあなたのコンポーネントにアクセスし、必要なコンポーネントを新しいプロジェクトで使用するための新しいコンポーネントライブラリにダウンロードできます。これがAltium Designerを使用してAltium 365プラットフォームを通じてどのように機能するかです。 ライブラリ共有 vs. コンポーネント共有およびプロジェクト共有 以前のブログで、Altium Concord ProとAltium Designerを使用してプロジェクトリリース機能を使用し、コンポーネントデータを再利用する方法を見てきました。これはすべて、設計データを安全なオンラインリポジトリに保存できるAltium 365プラットフォームを通じて有効になります。これは3つの方法で行うことができます: コンポーネントの作成。Altium Designerの標準機能を使用して個々のコンポーネントを作成し、プロジェクトパネルからワークスペースにこれらのコンポーネントを追加することができます。その後、Altium DesignerのコンポーネントパネルまたはWebインターフェースを通じてコンポーネントにアクセスできます。 プロジェクトリリースを通じて。プロジェクトリリースを作成すると、回路図シンボルやPCBフットプリントライブラリを含むすべての設計データを共同作業者と共有できます。共同作業者は、プロジェクトリリースからライブラリをダウンロードし、他のプロジェクトで再利用することができます。 記事を読む
PCB用のスキーマティック・ネットリストとは何ですか? PCB用のスキーマティック・ネットリストとは何ですか? 1 min Thought Leadership 次の素晴らしい回路図を作成した場合、設計ソフトウェアの背後には多くのことが行われています。回路図内のコンポーネント間の接続は、少数の論理的および電気的識別子に還元することができます。回路図は異なるコンポーネントとピン間の接続を示すグラフィカルな画像を提供するかもしれませんが、設計についてすべてを本当に理解するためには、重要な文書が必要になります。 回路図のネットリストは、実際のPCBを作成するために設計ソフトウェアの複数の機能で使用される中心的な情報の一つです。回路図のネットリストは、電気的接続情報を提供するとともに、設計データの機能構造を単一のデータセットで反映します。データを再利用する必要がある場合や、シミュレーションツールで電気的接続を迅速に定義する必要がある場合、ネットリストは回路図設計からこれらの他のツールへの移行を助けてくれます。また、設計レビューの一環として、製造業者にネットリストのコピーを提供する必要もあります。PCB設計ソフトウェア内のネットリストの正確な構造をもう少し詳しく見てみましょう。 スキーマティックネットリストには何が含まれていますか? さらに進む前に、EDAソフトウェアで使用されるネットリストには、IC設計やPCB設計用の異なるタイプがあることを理解しておく必要があります。これらのネットリストは、ロジック、コンポーネント間の接続、および階層的な関係を定義することができます。ネットリストは、設計の構造と機能を要約するための強力なツールです。ネットリストにはグラフィカルな情報は含まれていません。これはスキーマティックドキュメント自体に含まれています。 それはそうと、回路図とそのネットリストは密接に関連しています。ネットリストは回路図から生成することができるし、回路図( フラットまたは階層的)はネットリストから生成することもできます。PCB回路図の情報に関して言えば、ネットリストには複数のデータエントリが含まれ、各エントリには以下の情報が含まれます: ネットラベル:スキーマティック内の特定のネットに付ける名前です 参照指定子:ネット上に接続されたコンポーネントのための指定子です ピン番号:ネット上の各コンポーネントはいくつかのピンを持っているため、ネット上の各コンポーネントのピン番号がネットリストに表示されます スキーマティックのネットリストの読み方を知っていれば、回路がシミュレーションの準備時にSPICEネットリストにどのように変換されるかを見ることができます。また、サードパーティのライブラリからのネットリストに見つかるかもしれないエラーをトラブルシューティングすることもできます。 回路図をキャプチャして初期レイアウトにインポートすると、回路図のネットリストデータが使用されて、未配線のレイアウトで見られる接続線が作成されます。回路図にこれ以上の変更を加える必要がない限り、ボードを配線する際に設計データが一貫していることを確信できます。ただし、製造前に BOMとガーバーファイルが回路図とネットリストの情報と一致していることを確認する必要があります。 製造業者がネットリストをどのように使用するか 設計レビュー中に、回路図のネットリストのデータがGerber、BOM、および回路図のデータと比較されます。ネットリストとこれらのドキュメントの1つ以上の間に不一致が見られることはよくあります。これは、ほとんどの場合、設計が完了する前にネットリストとBOMをエクスポートした結果であり、設計を送信する直前の最後の変更により、BOM、ネットリスト、およびGerberを再構築して、すべてのデータが一致していることを確認する必要があります。これが繰り返しに聞こえるかもしれませんが、低品質の製造業者を使用して不良のボードのバッチを郵送で受け取るよりはましです。 製造業者は、ネットリストを使用してベアボードテストの要件を定義します。ネットリストの接続性は、ベアボードテストプロセスに使用されるテストフィクスチャにプログラムされます。ODB++データファイル形式は、ネットリストをパッケージから生成できるため、製造において好ましい形式です。それ以外の場合は、Gerberファイルと一緒にIPC-D-356ネットリストを送信することをお勧めします。これにより、ベアボード製造前に徹底的な比較が可能になります。 古いプロジェクトのネットリストを捨てないでください デザインの再利用は新しい概念ではなく、 頻繁に使用するライブラリや回路ブロックを保持することから全てに及びます。異なるEDAアプリケーションからの設計データを希望のプラットフォームにインポートすることは難しい場合があります。次の設計は古い設計のバリアントであるかもしれませんし、元の回路図/レイアウトの特定の機能ブロックを参照する必要があるかもしれません。古いプロジェクトからのネットリストを保持しておくことで、元のレイアウトや/および回路図データが破損しているかアクセスできない場合でも、新しい設計プラットフォームでそれらを再構築するのに役立ちます。 回路網リストに配置されたデータは特定の形式で高度に構造化されているため、異なる設計プラットフォームは新しい設計を構築する際に互いの回路網リストを再利用することができます。古い設計のコンポーネントに対してモデル、回路図シンボル、PCBフットプリントを持っていれば、新しいソフトウェアで元の設計を手動で再構築する必要はありません。回路網リストからネット名、参照指定子、ピン番号を読み取ることはできますが、古い回路網リストから設計を迅速に再構築できる設計ソフトウェアを使用する方がはるかに良いでしょう。 Altium 記事を読む
PCB設計および製造のためのASME基準 PCB設計および製造のためのASME基準 1 min Blog ASMEはPCB設計と展開について何を言っているのでしょうか? 実は、製造のための設計中に考慮すべきASMEからの多くの重要な点があります。信頼性を確保するための重要なIPC基準のいくつかはASME基準から派生している一方で、他の文書化および図面基準はASME基準で明示的に指定されています。電気機械システム、自動車産業、または航空宇宙で作業するかどうかにかかわらず、適切な設計ソフトウェアは、これらの基準すべてに準拠したPCBレイアウトと文書を作成するのに役立ちます。 ALTIUM DESIGNER® 最高のツール、自動化された文書化、および生産計画機能を統合した統一されたPCB設計パッケージ。 ASMEは、あらゆる種類の機械製品に対する設計要件を指定する組織です。安全余裕、機械公差、機械図面に関する要件など、多くの事項がASME基準で指定されています。ASME基準やASMEコードのすべての側面に精通していないほとんどの設計者は、PCB設計に関する機械要件を認識していないかもしれません。 電子製品に使用されるプリント基板に関するさまざまなIPC基準を、ほとんどの電子設計者が認識しているべきです。これらの基準は、電子製品の製造可能性と信頼性を確保するために設計されていますが、関連するASME基準はPCB設計の異なる領域の寸法付けと公差により関心があります。 PCB設計に関する重要なASME基準 ASMEは、機械工学者がさまざまな設計の側面を適切に実装することに関心を持っているため、PCBに関するASME基準は、PCB設計のさまざまな側面に関する重要な幾何学的寸法および公差要件を指定しています。これらの重要な要件は、IPC 2615基準にも反映されており、適切な設計ソフトウェアを使用すると、寸法および公差情報をレイアウトおよびドキュメントに直接実装できます。したがって、ASME基準は、たとえばボイラー圧力容器および配管設計をカバーする一方で、それに内蔵されている任意のコンピュータチップもカバーします。コンピュータチップが故障すると、ボイラー圧力容器および配管が非常に危険になる可能性があります。 IPC基準との関係 IPC 2615の下での電子機器に関する重要な基準は、実際にはASME Y14.5Mから派生しています。プリント基板の寸法および公差に関するこれらの基準に準拠するには、超高精度のコンポーネント配置を可能にし、ルーティングおよびビア設計ツールとインターフェースするCADツールが必要です。また、機械図面に直接公差を指定する必要があります。 適切な設計ソフトウェアを使用すれば、PCBに重要な寸法および公差情報を追加するために、設計をコマンドラインベースのCADプログラムにエクスポートする必要はありません。他のPCB設計プログラムでは、プログラム間でデータを移動させる必要があり、同期が取れません。複数の設計プログラムを使用し、設計の異なる部分間で情報を手動で同期させる代わりに、ドキュメンテーション、レイアウト、回路図、部品表を通じて同期を強制する単一の統合設計パッケージが必要です。 ビアと穴のサイズおよび公差は、回路基板に関するIPC基準およびASME基準で取り扱われる領域の一つです。 ビアと穴の公差を指定する方法についてもっと学びましょう。 ASME/IPCの寸法および公差基準は、設計文書および図面にも適用されます。参照指定子の使用にまだ慣れていない場合でも、適切な設計ソフトウェアを使えばすぐに習得できます。 PCB設計ソフトウェアでの参照指定子の取り扱いについてもっと学びましょう。 よく文書化され、設計された回路図は、ボードの基礎を形成し、レイアウトが電子回路図および文書と適切に対応していることを保証します。 記事を読む
Altium Designerでの多層PCBスタックアップの計画 1 min Blog PCB設計者 PCB設計者 PCB設計者 近年のPCBが、単層や2層の基板で設計されることはほとんどありません。最新のPCBでは高密度の接続と多数のコンポーネントが使用されており、これからの設計は多層PCBになっていくと考えられます。手掛けるデバイスのフォームファクターがかつて見たことのないものであれば、リジッドフレキシブル基板を使用することになるでしょう。こうした種類のPCBには、適切なスタックアップが不可欠です。つまり、直感的なスタックアップ マネージャーを備えるPCB設計ソフトウェアが必要になりますが、Altium Designerではマルチレイヤー スタックアップを直接、PCBレイアウトに簡単に同期できます。 Altium Designer マルチレイヤー スタックアップの管理ツールを備えるPCB設計ソフトウェアパッケージ マルチレイヤーのスタックアップの最適な方法は、数々の要素によって変わってきます。特定の方法がなければ、あらゆる設計や配線、EMCの要件に同時に対処できます。多層PCBのデバイスのアプリケーションによっても、レイヤースタックアップの最適な方法は決まります。Altium Designerの統合設計環境では、優れたスタックアップ ツールからレイアウト、シミュレーション、ルールチェックの機能を直接使用できます。 マルチレイヤー スタックアップの計画 どんな回路基板でも、コンポーネントや銅箔の配置に関して計画を立てなければなりません。単層のPCBでさえ、レイアウトに関する計画がなければ製造にリリースできません。PCB設計では、回路の設計が終わるまでコンポーネントの配置に常に注意を払う必要がありますが、これは多層PCBにも当てはまります。両面PCBや多層PCBでは、ベリードビアの穴を追跡したり、厚さや外層について計画したりすることができます。 今後の多層PCBのスタックアップ方法を計画する際は、信号プレーンとパワープレーン/GNDプレーンの繰り返しになり、各レイヤーが絶縁コアかプリプレグで分離されることが一般的になるでしょう。リジッドフレキシブル基板は本質的に多層基板であり、それぞれにスタックアップの要件があります。その目的はレイヤー間のクロストークとEMIを抑制すると同時に、効率的な配線を可能にすることです。 多層PCBのスタックアップ方法 多層PCBの設計は技であり、芸術でもあります。設計全体のプロセスは、レイヤーの配置によって変わってきますが、レイヤー間を配線するためにビアを使用し、適切なパワープレーンとGNDプレーンのペアの配置を選択して、製造業者向けの情報をすべて含めた書類を作成する必要があります。これらは、優れたレイヤー構成マネージャーを備えるPCB設計ソフトウェアがなければ完了できません。 スタックアップの各レイヤーにはそれぞれの機能がありますが、これらはマルチレイヤー スタックアップで指定する必要があります。 マルチレイヤーのスタックアップ方法について、詳しくはこちら 記事を読む