ソートリーダーシップ

アルティウムは業界をリードする専門家と密接に協力して、PCB設計のリーダーシップリソースを提供しています。

Filter
見つかりました
Sort by
役割
ソフトウェア
フィルターをクリア
ヒートシンクからのEMIとその対策方法 コンデンサのヒートシンクからのEMIとその対策方法 1 min Thought Leadership 適切なヒートシンクを選択することで、システムを冷却し、EMIを防ぐことができます. 明らかではないかもしれませんが、また、ほとんどの設計者がチェックするとは思わないかもしれませんが、ヒートシンクはスイッチング要素に接続されている場合、EMIを発生させることがあります。これは電源設計における一般的な問題であり、特にヒートシンクが高電流を引き出し、高周波でスイッチングするコンポーネントと接触する場合に発生します。ヒートシンクからのEMIを減らすには、導電部分と放射部分のバランスを取る必要があり、これを行うためのいくつかの簡単な設計手順があります。 ヒートシンクと寄生容量からのEMI ほとんどの設計者が基板上のコンポーネント用に ヒートシンクを選択することを考えるとき、彼らはおそらく単にメーカーの推奨に従うだけです。彼らはメーカーが推奨するサイズと同様のヒートシンクを使用するかもしれませんが、熱伝導率が高い材料で作られたものを選ぶかもしれません。設計者の中には、 アクティブ冷却対策、例えば冷却ファン、または(極端な場合には)液体冷却や蒸発冷却を選択する人もいます。これらの対策は、特にメーカーが必要なヒートシンクと組み立てガイドラインを提供している場合、標準化されたコンポーネントを使用する際に適切です。 CPUの速度が1 GHzを超えて以来、ヒートシンクからの放射および導電EMIがより目立つようになりましたが、これは電力電子およびコンピュータシステム業界外の多くの設計者には気づかれなかった可能性があります。今日では、一般的にヒートシンクは単に接地されるべきであり、これがEMIの問題を解決するとされています。実際には、これだけでは問題を完全に解決するわけではなく、問題を解決するには寄生容量を管理する必要があります。 EMIの両方のタイプは、スイッチングICと近くのヒートシンクとの間の寄生容量結合によって生じます。スイッチングトランジスタを持つ集積回路の構造を調べると、チップパッケージと任意の 熱伝導ペーストやインターフェース材料がキャパシタの絶縁領域を形成しているのがすぐにわかります。この寄生容量がヒートシンクに共通モード電流を誘導する責任があります。 MOSFETに垂直ヒートシンクが接着された例。 次に何が起こるかは、ヒートシンクが接地されているかどうかによります。ヒートシンクが接地されていない場合、ヒートシンクとチップは容量結合電流の地面への容易な戻り道がないため、放射されたEMIの源として機能します。電流はヒートシンク内の複数の電磁共鳴を励起し、高電流と強い放射を持つヒートシンク内の一連の領域を作り出します。これは、ヒートシンクが通常デフォルトで接地される理由の一つです。しかし、ヒートシンクに誘導された強い電流が地面に向けて偏向されると、 グラウンドリターンパスに応じて、近くの回路で伝導EMIの源を作り出す可能性があります。 なぜヒートシンクからの放射または伝導EMIがより頻繁に対処されないのでしょうか?その理由はいくつかあります。通常、ヒートシンクからのEMIが顕著になるのは以下の二つの場合です: スイッチング時の高電流。 これは、大きなスイッチングレギュレータで大型トランジスタがスイッチングする電力電子工学における一つの問題です。より短い時間でより高い電圧にスイッチングすると、ヒートシンク内のより大きな変位電流が生成されます。 プロセッサの高速スイッチング。 より高速に動作するプロセッサは、ヒートシンク内に大きな変位電流を簡単に生成することができます。また、ヒートシンク内の高周波共鳴を容易に励起することもできます。 どちらの場合も、高電圧/電流のスイッチング電源を設計する際には、ヒートシンクへの容量結合を考慮する必要があります。他のアプリケーションには、低電圧で動作するデバイスのGPUやCPUのためのVRMが含まれます。 ヒートシンクからの伝導および放射EMIのバランス 記事を読む
IoT製品におけるDC-DCコンバーターのEMIを抑制するためのいくつかの技術 IoT製品におけるDC-DCコンバーターのEMIを抑制するためのいくつかの技術 1 min Thought Leadership このリチウムイオンバッテリーは、安定した電力を提供するためにスイッチングレギュレータに接続されている可能性が高いです。 さまざまなソースからのIoTデバイスのEMI感受性を抑制することは、新製品が設計通りに動作することを保証する上で重要です。同様に、EMC規制に準拠させたい場合、IoT製品は不要な放射を制限するべきです。次の製品からの放射EMIのさまざまなソースの中で、デバイス自体内のEMIも信号および電力の整合性の問題を防ぐために制御されるべきです。 IoTデバイスの電源は、特にMHzスイッチング周波数で一般的に動作するスイッチングDC-DCコンバーターの場合、放射および伝導EMIの問題のあるソースになり得ます。おそらく、ボードで複数のDC-DCコンバーターを扱うことになるでしょう。これらのコンバーターからのEMIは、ノイズをフィルタリングし受信機を隔離するための重要なステップが実施されていない場合、無線受信機に干渉する可能性があります。レイアウト中にDC-DCコンバーターのEMIを減らし、IoT PCB内の他の敏感な回路を放射および伝導EMIから保護するために取ることができるいくつかの基本的な設計ステップがあります。 それはあなたのスタックアップから始まります ほとんどの信号整合性および電力整合性の問題と同様に、DC-DCコンバータのEMI削減は適切なスタックアップ設計から始まります。IoTデバイス用の機能満載のボードは、ルーティング、電源およびグラウンドプレーン、およびボード表面のコンポーネントに十分なスペースを提供するために、最小6層のボードを使用することが多いでしょう。層の数よりも、さまざまな層の配置が重要です。新しい携帯電話は、より大きなバッテリーのための追加のスペースを提供するために、すべてフレックスまたはリジッドフレックスになっています。 DC-DCコンバータ回路が表面層に配置されるため、表面層の直下にグラウンドプレーンを含め、できるだけ大きくする必要があります。これにより、表面層の他の信号に対しても、低ループインダクタンスを持つ適切な参照平面が提供されます。古いDC-DCコンバータのデータシートの中には、出力インダクタの前の出力トレースの周りのグラウンドプレーンの一部を切り取ることを推奨しているものがあります。これは、低いスイッチング周波数を使用し、より高い信号レベルで動作する古いコンバータにとっては問題ないかもしれませんが、新しいIoT/モバイルデバイスのEMIの観点からは良くありません。 内部レイヤーでは、十分な 面間キャパシタンスを提供するために、電源プレーンをグラウンドプレーンの隣に配置します。この配置は、適切に配置された デカップリングキャパシタと合わせて、電源バス上のリンギングを減少させるのに役立ちます。これにより、内部レイヤーでのストリップラインルーティングも可能になります。レイヤー配置でのシールディングを活用することに加えて、スタックアップ設計における目標は、 PDNインピーダンスを可能な限り低くすることで、リンギングからのEMIを抑制することです。 隔離 隔離には、距離とシールディングの2つの形態があります。高電流出力を持つスイッチング電源を接地された シールディング缶で隔離することは、近くの大きなループインダクタンスを持つデジタル回路で意図しないスイッチングを誘発する放射EMIを防ぐための明白な解決策です。バッテリーで動作し、電力を節約して使用しているIoT製品では、シールディング缶が必要ないかもしれません。あまり強くない伝導ノイズはフィルタリングできます(これは出力キャパシタの一つの用途です)。 代わりに、基板内の重要な機能ブロックを、異なるエリア間に接地された銅プールまたはビアフェンスで分離することができます。ビアフェンスは通常、単一の波長(通常はスイッチングレギュレータの膝周波数に対応する周波数)で 放射EMIを抑制するために最適化されていることに注意してください。無線受信機との干渉から放射EMIを抑制することが目標である場合、受信回路をコンバータから遠ざけて配置する必要があります。コンバータはいくつかの放射放出を生じるかもしれませんが、これらの放出の強度は、受信機がコンバータから遠く離れた場所にある場合、受信機で低くなります。 スマートフォンのPCBでのシールド 適切なコンポーネントを選択する DC-DCコンバータ回路のコンポーネントは、EMI抑制を提供する上で重要な役割を果たします。レギュレータのPWM信号の膝周波数よりも高い自己共振周波数(高い)を持つキャパシタを使用する必要があります。これにより、望ましい容量性インピーダンスを供給できるようになります。また、インダクタも磁場をより良く閉じ込めるために、シールドされたタイプを使用するべきです。 大手ICメーカーは、小型フォームファクターと手頃なコストで低EMI 記事を読む
SMPS回路設計:どのスイッチング周波数を使用するか? SMPS回路設計:どのスイッチング周波数を使用するか? 1 min Thought Leadership ネットワークスイッチの電源供給 電力エレクトロニクスおよびスイッチングモード電源(SMPS)の設計者は、高いスイッチング周波数を使用するとシステム内のスイッチング損失が増加する可能性があることを知っておくべきです。しかし、電源とそれに含まれるコンポーネントの小型化を推進する中で、設計者はSMPS回路設計において高いスイッチング周波数を使用することが求められます。これにより、スイッチング損失やノイズがシステム内で深刻な問題となることがあります。 ほとんどのエンジニアリングの決定と同様に、適切なスイッチング周波数を選択することは、コンポーネントのサイズを小さくする、損失を減らす、ノイズを取り除くというトレードオフのセットを伴います。これら3つを同時に達成することは難しい、または不可能です。しかし、賢いPCBレイアウトの決定を行うことで、SMPS回路における高周波数とエッジレートの必要性と、ノイズを最小限に抑える必要性とのバランスを取ることができます。 SMPS回路における周波数、損失、ノイズの最適化 SMPSがより小さなコンポーネントで動作するためには、スイッチングPWM信号を高い周波数で動作させる必要があります。出力インダクタ、キャパシタ、およびダイオードは、出力を通じてDC電力を伝達するように設計されており、スイッチングノイズ、入力電圧からの残留リップル(例えば、整流回路からのもの)、および入力に存在する可能性のある任意の不要な高調波をフィルタリングします。言い換えると、出力はある特定の帯域幅内でローパスフィルター(実際には、これはRLCバンドパスフィルターです)のように機能します。このフィルターのロールオフ周波数を定義することができます(スイッチングデジタル信号のニー周波数と混同しないでください)。 PWMスイッチングノイズが出力を通じて伝播するのを防ぐためには、PWMスイッチング周波数は回路のロールオフ周波数よりも大きくなければなりません。SMPS回路でバックまたはブーストトポロジーを使用している場合でも、出力のロールオフ周波数は出力キャパシタンスとインダクタンスに反比例します。 言い換えると、十分に高いPWMスイッチング周波数を使用すれば、SMPS回路でより小さなコンポーネントを使用できます。 バックブーストSMPS回路図 一般的に、SMPS回路におけるPWM信号の切り替え周波数が損失の主要な決定要因であり、それが熱に変換されると考えられています。高い周波数を使用する際のこの問題は正しいですが、周波数だけがMOSFETの損失を決定する唯一のパラメータではありません。実際には、SMPS回路で使用されるパワーMOSFETでは、エッジレートがSMPS回路の発熱損失の重要な決定要因です。 回路要素が理想的であるとは限りませんが、適切でない場合にそれらをそう扱いがちです。上記のMOSFETにも同じことが当てはまります。PWM信号が0Vに落ちたとき、MOSFETが完全にオフにならず、エッジレートが遅すぎると導通し続けることがあります。PWM信号のエッジレートを上げると、MOSFETは完全にサイクルされ、OFF状態での導通が少なくなります。これは、実際には切り替え周波数を高い値に設定しても、電力損失を減少させます。 高いPWM周波数と速いPWMエッジレートの組み合わせにより、SMPS回路で使用されるコンポーネントを小さくすることができます。電力損失(つまり、熱放散)が低いため、小さなヒートシンクを使用できます。しかし、高周波数のPWM信号は強く放射し、速いエッジレートは回路内で 過渡応答を引き起こします。この挙動は、MOSFETパッケージとボードレイアウトレベルでの寄生容量と寄生インダクタンスに完全に関連しています。SMPS回路が寄生インダクタンスが最小限になるようにレイアウトされていることを確認する必要があります。 賢いレイアウト選択でSMPSのノイズスパイクを減らす SMPS回路(ダウンストリームPDNを含む)の寄生インダクタンスは、SMPS回路の電圧スパイクの大きさを決定します。寄生容量もSMPS回路の電圧/電流スパイクに寄与しますが、これが支配的になるのはkVレベルで作業している場合です。寄生インダクタンスによるこの特定の電圧スパイクは、SMPSレイアウトの回路ループを占有し、コンポーネントを故障のポイントまでストレスさせる可能性があります。 高速なエッジレートを使用すると、SMPS回路に大きな過渡電流が誘導されます。 標準厚さのFR4上の比較的短いトレース(数cm)でも、約10nHの寄生インダクタンスがあります。PWM信号の急速な立ち上がりエッジと数アンペアのON電流が、数ボルトのスパイクを誘導することがあります。時間が経つにつれて、これはコンポーネントにストレスを与え、SMPSの故障につながります。 高いスイッチング周波数と速いPWMエッジレートを使用すると、このインダクターやこれらのキャパシターよりも小さいコンポーネントを使用できます。 この課題を克服することは難しい場合があり、SMPS回路の寄生成分を抽出することが必要です。これらの回路を設計する際の典型的な戦略は、機能を検証するために回路図からシミュレーションを実行し、プロトタイプを作成した後にテストを行うことです。ここで概説されたガイドラインを活用すれば、動作するデバイスを得るために必要なプロトタイピングの回数を減らすことができるでしょう。 Altium Designer®の設計ツールは、SMPS回路を設計し、製造と組み立てに持ち込むことができる強力なレイアウトを作成するのに理想的です。 記事を読む
Altium Designerにおける周波数変調シミュレーション Altium Designerにおける周波数変調シミュレーション 1 min Thought Leadership アナログ信号を扱う際には、動作中の調和歪みのような問題を防ぐために、デバイスが線形に動作していることを確認する必要があります。アナログデバイスの非線形相互作用は、クリーンなアナログ信号を歪ませる歪みを引き起こします。アナログ回路がクリップしているかどうかは、回路図やデータシートを見ただけでは明らかではないかもしれません。信号チェーンを手動で追跡する代わりに、シミュレーションツールを使用してデバイスの挙動についての洞察を得ることができます。周波数変調シミュレーションのような、正弦波信号を用いた重要なシミュレーションは、Altium Designer®のプリレイアウトシミュレーション機能を使って簡単に実行できます。 この投稿では、 以前のシミュレーションから続けて、トランジスタを含む回路にFMソースを導入します。ここでの考え方は、アナログソースを使用してデバイスが線形範囲、つまり非線形回路が線形に振る舞うのを止める入力値の範囲を確認することです。 これは、アンプ設計やトランジスタベースのアナログ集積回路の設計において非常に重要です。一般的な非線形回路やアンプ設計に関しては、以下のようなことを知る必要があります: 飽和レベルは、コンパレータ、シュミットトリガ、オペアンプ などの回路において重要です。圧縮点は、相互変調生成物が顕著になり、信号が劣化する入力電力レベルを決定します 。バイアスあり/なしのDC成分(例えば、フォトダイオードの光導電モードや光起電力モード) に対する動作モード。非線形フィルタリングは、トランジスタモデルの寄生要素や全体の回路および半導体の非線形挙動に関連します 。このシステムで重要なもう一つの点は、回路の非線形性に加えて、整流とDCバイアスです。共通コレクタ/エミッタ増幅回路では、トランジスタの電流を完全に変調するために、時間変動信号にある程度のDCバイアスが必要になることがよくあります。そして、負荷にクリーンな波形が渡されるように、必要最小限のDCバイアスを見つけることが有用です。この記事では、これを調査し、これらのシミュレーションを一般的に設定する方法を示します 周波数変調シミュレーションの始め方 前回の投稿では、NPNトランジスタを含む回路の負荷線分析について見てきました。DCスイープの結果から、コレクター-エミッター電圧が高いレベルにランプアップされると、コレクター電流が飽和し始めるのがわかります。これにより、この回路の負荷線を抽出し、しきい値電圧の変化を見ることができました。 このシミュレーションでは、正弦波FMソースをシミュレーションに取り入れ、クリッピングが発生するタイミングを調べる方法をお見せします。この周波数変調シミュレーションでは、フーリエ成分を調べ、新しい高調波が生成されるタイミングを決定できます。次に、DCバイアスを変更してシミュレーションを修正し、FM信号がクリップする方法と、関連する周波数帯域全体で線形動作につながる入力値の範囲を特定できます。 RF信号チェーン設計の重要な側面です。 前回の投稿からシミュレーション回路図を再利用しましたが、ベースに見られるDCソースを周波数変調ソースに置き換えました。このシミュレーションソース(VSFFMと名付けられています)には、 コンポーネントパネルのSimulation Generic Components.IntLibライブラリからアクセスできます。この回路図では、V_CCからトランジスタベースへの抵抗を追加して、V_FMにいくらかのDCオフセットを適用しました。この回路図を使用して、R_Bの値を調整し、V_FMに十分なDVオフセットを適用して、R_LOADにクリーンなFM信号を渡せるかどうかを確認できます。 この回路図では、基本的な考え方は、FM波を使ってトランジスタの電流を変調することです。ここでは、R_Eを電流制限抵抗として共通コレクタ構成を使用しました。しかし、共通コレクタ構成(ベースにV_FM)を使用し、R_Eを通じて出力を測定することもできます。私たちの目標は、変調された負荷電流を線形範囲に入れるためにV_CCによって供給されるベース電流を決定することです。この追加電流は基本的に負荷線を上に移動させ、V_CCが十分に大きい限りアクティブ領域に入ることに注意してください。しかし、V_FMが大きすぎると、飽和領域に戻ってしまう可能性があります。V_CCがロジックレベルで動作する場合、十分なDCオフセットを適用すれば、負荷でクリーンなFM波を得ることができると合理的に期待できます。 FM信号パラメータ 記事を読む
高速信号のための遅延調整:知っておくべきこと 高速信号のための遅延調整:知っておくべきこと 1 min Thought Leadership PCBにおける長さが一致したライン オシロスコープで2つの信号の読み取りを見ると、信号トレース間の長さ/タイミングの不一致が下流のゲートを不適切にトリガーすることがどのようにして起こるかがわかります。マスタークロック信号の伝達時間と、異なるコンピュータインターフェースで送受信されるデータの往復時間を見ると、状況はさらに悪化します。SDRAMは、スレーブデバイスにクロックを配置し、取得したデータと一緒にクロック信号を送信することで、この問題をうまく解決しています。一方、他のインターフェース(USB 3.0、SATAなど)は、データから直接クロック信号を抽出します。 私たちの残りの部分にとって、複数の並列インターコネクト、差動ペア内のトレース、そしてクロック信号の間での遅延調整は、データが正しい場所に正しいタイミングで到着することを保証します。長さ調整スキームを適用するには、単なる長さではなく、異なる信号/インターフェース標準での信号遅延時間を扱う必要があります。遅延調整の設計と信号を同期させるために知っておくべきことはこちらです。 遅延調整対長さ調整 長さ調整と遅延調整は基本的に同じ考え方を指します。目標は、一致したネット群内の信号トレースの長さを同じ値に設定することです。この考え方の目的は、すべての信号がある制約されたタイミングの不一致内で到着するようにすることです。一致したグループ内で二つの信号トレースが不一致の場合、通常の方法は、より短い信号トレースにいくつかの迂回を追加することによって遅延を追加し、信号を同期させることです。 トロンボーン、ノコギリ波、アコーディオンの迂回は、トレースに遅延を追加する典型的な方法です。 クロック信号と複数の信号線の間、差動ペア内、またはクロック線がない複数の差動ペア間で遅延調整を適用する場合でも、信号の特定のタイミング許容範囲を知る必要があります。SerDesチャネルの差動ペア受信機とコンポーネントでは、各信号間で許容される長さの不一致を決定する制限要因は、信号の立ち上がり時間とインターコネクト内の伝播遅延です。 異なるデータレートで動作し、 異なる信号規格を使用するインターフェースは、異なる許容される長さまたはタイミングの不一致を指定します。これらの不一致値は通常、FR4上で作業していると仮定していますが、異なる誘電率定数を持つ基板上でのより専門的な設計は、異なる長さマッチングの制約を伴います。ボードのI/Oチャネルを計画する際には、ボードの許容される長さの不一致値を調べ、この許容される不一致をタイミングの不一致に変換する必要があります(下記の方程式を参照)。 タイミングの不一致を扱う タイミングの不一致を長さの不一致の代わりに扱うことは、遅延調整の中心的な考え方です。長さの不一致のみを考慮するPCB設計ソフトウェアを使用している場合は、特定の基板に対して正しい長さの不一致を計算する必要があります。長さの不一致は、特定の基板での信号速度(単位:in./ps)にタイミングの不一致を乗じたものに等しいです: 信号速度の方程式(単位:in./ps) 一般に、 誘電率が大きい基板は信号速度が低下し、これにより2つの信号間の許容される長さの不一致が増加します。同様に、標準コンポーネントを過剰に駆動している場合、立ち上がり時間が短くなり(スルーレートが高くなり)、タイミングに対する制約も厳しくなります。一次近似として、信号の立ち上がり時間を半分にすると、許容されるタイミング制約も半分に切り下げるべきです。 許容される不一致は、通常、立ち上がり時間ではなく、クロック周期の許容誤差の観点で定義されます。与えられたクロック周期において、許容される長さの不一致は信号速度に反比例します。誘電率(例えば、FR4)を仮定して引用される長さの不一致がある場合、 特定の基板材料の信号速度を使用して長さの不一致を変換する必要があります。 差動ペアにおける位相の不一致 「位相ミスマッチ」という用語は、長さ調整や遅延調整と同じ文脈で使われることがありますが、 差動ペアを扱う際に重要な影響を及ぼします。差動ペアのルーティングでは、異なるペアが変則的に配置されたビアを通過する必要がある場合など、ペアの各端が非結合状態になる短い領域が生じることがあります。これは、ペア全体の長さが不一致であることに加えて、一致させる必要がある複数のペアがある場合もあります。 記事を読む
EMIを防ぐために、マルチレイヤーグラウンドリターンパスをたどりましょう EMIを防ぐために、マルチレイヤーグラウンドリターンパスをたどりましょう 1 min Thought Leadership 複雑な多層PCBでは、グラウンドへの戻り経路をたどることがすぐに複雑になります。PCBが少ない層数を持つ場合(例えば、2つのプレーン層を持つ4層ボード)、戻り経路を特定し、EMIを防ぐために意図的に設計することは比較的簡単です。しかし、層数が多い場合には状況がより複雑になります。複数のプレーン層と導体がグラウンド戻り経路を形成することがあり、その導体がグラウンドに接続されていない場合でもです。ここで、グラウンドプレーンと参照プレーンを区別することが役立ちます。なぜなら、両方ともPCB内の戻り経路の一部を形成することができるからです。 グラウンド戻り経路対参照プレーン 参照プレーンは、信号伝送経路の固有の部分です。それらがボード内に意図的に配置されているか(例えば、信号トレースのためのグラウンドプレーン)、または信号トレースに近接している意図しない参照プレーンであるかは、ボード全体の信号トレースの位置を慎重に追跡しない限り、判断が難しいかもしれません。信号のグラウンド戻り経路は、実際にはグラウンドを通過しないかもしれません。それはシャーシ、電源プレーン、または他の接地された導体を通過する可能性があります。 リターンパスが基板内のどこを通っても、常に基板上の低電位点、つまり電源に戻るグラウンドリターンポイントに戻ろうとします。リターン信号がシャーシ、電力平面、または他の導体に誘導された場合でも、グラウンド導体とより高い電位を持つ導体との間の電位差により、グラウンドに引き戻されます。 信号が伝播する際の リンギングの特性であるだけでなく、信号のリターンパスは以下の振る舞いを決定します: EMIの感受性。 リターンパスによって作られるループのインダクタンスは、回路の EMIへの感受性を決定します。大きな電流ループを持つ回路は、より大きな寄生インダクタンスを持ち、放射されたEMIに対してより感受性が高くなります。ループがタイトな場合、ループのインダクタンスは低くなります。これは、高速信号トレースを隣接層の基準平面に近づけて配線する理由の一つです。 混合信号基板における干渉。信号を運ぶ導体と最も近い基準導体との間の寄生容量、および回路によって作られるループは、スイッチング信号によって見られるリアクタンスを決定します。リアクタンスは信号の周波数成分の関数であるため、信号の戻り経路は中程度の周波数で予測しにくくなります。 このガイドを読んで、単一の平面層に対する混合信号の戻り経路を設計する方法についてもっと学びましょう。 コモンモードノイズ経路。一度特定のトレースに誘導されたコモンモードノイズは、信号がグラウンドに戻るのと同じ経路をたどろうとします。コモンモードノイズによってたどられる正確なグラウンド戻り経路は、信号によって見られるリアクタンスを決定するその周波数成分に依存します。 複数の平面層を持つ 多層スタックアップで配線している場合、状況はさらに複雑になります。信号経路に沿って基準導体が変わる可能性があります。初期の基準平面を決定する主要な量は、信号トレースと近くの導体との間の寄生容量と回路のインダクタンスです。寄生インピーダンスは、インダクタンスのおかげで隣接する導体に局所化されていないことに注意してください。これは、多層基板において複雑なグラウンド戻り経路を作り出す可能性があります。 これらのトレースのグラウンドリターンパスを追跡できますか? 確かなグラウンドリターンパスへの回帰 上記の内容を読んでまだ、 複雑なPCBでのリターン電流がどうなるのか疑問に思っているなら、電流がグラウンドプレーンや他の接地された導体に結合されるのはなぜか、そしてそもそもそれが起こる理由は何か、と自問自答しているかもしれません。これらはどちらも妥当な質問です。 隣接する導体間の寄生 まず二番目の質問に答えることで、最初の質問への答えを説明するのに役立ちます。リターンパスが導入される場所は、信号トレースと隣接する導体間の容量と、信号トレースと該当する導体によって形成される回路の自己インダクタンスに依存します。これらの量が合わさって、信号によって見られるインピーダンスを決定します。 記事を読む
PCB内の信号歪み:原因と解決策 PCB内の信号歪み:原因と解決策 1 min Thought Leadership 高速信号の長さ合わせは、すべて同期に関するものです... 信号の歪みは、信号の整合性や回路分析に関する多くの議論でしばしば触れられるだけのものです。より多くのネットワーク製品が高速で動作し、複雑な変調方式を使用するようになると、信号の歪みがビットエラー率に寄与する深刻な問題となることがわかります。歪みの源は、電気的な相互接続でのデータレートの速度向上を妨げる主要なボトルネックの一つとして挙げられています。 同じ問題は、特に10GHz台の周波数で動作するアナログ信号においても見られます。RF/ワイヤレス領域の設計者は、設計、テスト、測定中にこれらの信号の歪み源を理解する必要があります。 線形対非線形の信号歪み 信号の歪みのすべての源は、線形または非線形として分類することができます。それらは調和波の生成という点で異なります。非線形歪みの源は、信号が源を通過する際に調和波を生成するのに対し、線形信号歪みの源は調和波を生成しません。歪みの両方の源は、信号を構成する周波数成分の大きさと位相を変更することができます。 信号の歪みの異なる源は、帯域幅の歪み源と特定の信号の周波数内容に依存して、異なるタイプの信号(アナログまたはデジタル)に異なる影響を与えます。信号の歪みの異なる源は、変調のタイプに応じて、変調された信号にも異なる影響を与えます。 明らかに、異なる信号の歪み源の範囲は広く、すべての源を詳細にカバーすることはできません。しかし、PCBトレースとコンポーネントにおける線形および非線形の信号歪みのいくつかの重要な源を要約することができます。 線形信号歪みの源 周波数応答と位相歪み。線形回路での周波数スイープシミュレーションに慣れている場合、伝達関数が 線形回路内の信号の位相と振幅の変化を定義することを知っているでしょう。回路、特定のコンポーネント、または相互接続の伝達関数は位相シフトを適用し、信号の大きさを調整します。位相と振幅のこれらの変化は周波数の関数であり、ボード線図で視覚化されます。これは、異なる周波数成分が異なる量だけ遅延され、これらの異なる周波数成分が異なる量で増幅または減衰されることを意味します。 不連続。 この広範な歪み源には、相互接続に沿ったインピーダンスの不連続(例:ビアやトレースのジオメトリ)や材料特性の不連続(例: ファイバーウィーブ効果から)が含まれます。 分散歪み。これは、基板、導体、およびボード内の他の材料における 分散によって生じます。この歪み源は避けられませんが、相互接続の長さが短い場合には気付かない程度に小さくすることができます。基板内の分散は、デジタル信号の異なる周波数成分がトレースを異なる速度で移動する原因となります。分散はまた、トレース上の信号によって見られる損失角度に影響を与え、信号歪みに寄与します。これにより、パルスが伸びる(つまり、群速度が周波数依存になる)ことが起こり、分散補償がない超高速レーザーで起こるのと同様です。 PCB相互接続で分散を補償する一つの解決策は、 DSPアルゴリズムを使用するか、正と負の群速度分散を交互に持つ層状基板ウィーブを使用して、関連する周波数範囲での正味の分散がゼロになるようにすることです。この特定のトピックは十分に広範なため、独自の記事に値します。 この優れた記事をSignal Integrity Journalで、PCBトレースの分散に関する完全な議論をご覧ください。 記事を読む