Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
ソートリーダーシップ
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
ソートリーダーシップ
Highlights
All Content
Filter
Clear
Tags by Type
全て
ニュースレター
OnTrack
ソートリーダーシップ
Software
全て
Altium Designer
CircuitStudio
Thought Leadership
Altium Designerの部品配置ショートカット
私は以前、PCB設計は90%が配置で10%が配線という記事を読みました。確かなことはわかりませんが、コンポーネントの配置は、基板設計全体において重要な部分と言っても過言ではありません。しかし、一部の設計者は、後から戻って基板の一部を再配置するだけで済むように、この配置作業の部分を急ぎ、配線に取り掛かります。 問題の1つは、配置プロセス時、設計者にフラストレーションがたまることだと思います。全てのコンポーネントを正確に配置、整列、位置合わせして、最適な配線チャネルを作成するには、時間を要します。これは特に、配置機能に制限のある設計ツールで作業する場合、または設計支援ツールで利用可能な配置機能の知識が十分にない場合に当てはまります。 さいわい、Altium Designerには作業に便利な強力な配置機能がいくつかあります。部品を整列できる手動の配置ユーティリティを備えており、最初に回路図からコンポーネントを選択して、それらをまとめて配置できます。また、特定のコンポーネントを検索・選択して配置するサポートが必要な場合、それらのユーティリティも用意されています。 整列機能を使用して配置を整理 配置する際に、コンポーネントを必ず移動する必要があり、面倒であることには認めざるをえません。新しいコンポーネントの挿入が必要かを確認するためだけに、一連のコンポーネントを整列することがしばしばあります。新しい部品を挿入する周囲を全て移動すると、完璧に整理された状態が崩れ、全てのコンポーメントを選択して整理し直す必要があります。 これは、部品ごとに手動で移動する単純な作業になりますが、使いやすいシンプルなサポートがあればいいと思いませんか? Altium Designerでは、配置の整列ツールのサポートが用意されています。さまざまな整列機能を自在に扱えるメニューが揃っており、ここでは、使用方法の例を説明します。この画面キャプチャからわかるとおり、コンポーネントが整列しておらず整理する必要があります。また、ピン間の距離が近すぎ、クリアランス違反もあります。 整列されていないコンポーネント まず、これら全てのコンポーネントを選択した後、右マウスボタンを押して [Align] メニューに移動します。[Align] メニューで、リストの上部にある [Align] を選択すると、以下の [Align Objects] サブメニューがポップアップ表示されます。 整列パラメータの設定
Thought Leadership
最小限のピンで7セグメントLEDディスプレイアレイを管理する
20代の頃、私はマルチタスクの能力を誇りに思っていました。瞬時に複数のプロジェクト間で切り替え、調達担当者、エンジニア、技術者、マーケティングマネージャー、サポートスペシャリストの役割を同時にこなしながら、自分の電子機器スタートアップを運営していました。マルチタスクができることは祝福だと思っていました。 10年後、マルチタスクは作業の質を下げ、同時に脳を消耗させることに気づきました。年を取るにつれて何もかも忘れてしまうのも不思議ではありません!明らかに、マルチタスクは私のワークフローにとって持続不可能な習慣でした。しかし、電子設計においては、タスク、あるいはピンを切り替えることで、最小限のピンで7セグメントLEDアレイを制御することが可能です。 7セグメントLEDディスプレイの仕組み 7セグメントLEDディスプレイは、7つのLEDを長方形に配置した数値表示器です。7セグメントディスプレイを操作する基本は、通常のLEDを駆動するのと同じで、点灯させるためには順方向電圧が必要であり、各LEDを流れる電流には制限抵抗が必要です。 7セグメントLEDディスプレイには8本のピンがあることがわかります。7本のピンは 個々のLEDの一方の端を制御し、1本の共通ピンがLEDのカソードまたはアノードを制御します。これはセグメントディスプレイのタイプによって異なります。LEDを点灯させるために必要な電流も、7セグメントディスプレイのサイズによって異なります。 電子機器では、7セグメントLEDディスプレイはカウンターやタイマーによく使用され、適切なLEDを点灯させることで数字やアルファベットを表示します。これらは容易に入手可能で、同じ目的を達成するために複数の単一LEDを配置するよりも実装が簡単です。 7セグメントLEDディスプレイはさまざまな形状やサイズで提供されています。小さいサイズのものは通常、マイクロコントローラーやロジックチップの出力ピンによって直接駆動されます。より大きく電流を多く消費するLEDディスプレイは、通常、 トランジスタを使用して電流を沈めたり供給したりします。 最小限のピンで7セグメントLEDディスプレイアレイを制御する 単一の7セグメントLEDディスプレイを制御するのは簡単で、7つのピンのみを使用し、ディスプレイの共通をグラウンドまたは正の電源に恒久的に接続するだけです。しかし、単一セグメントでは実際のアプリケーションでの機能性に限りがあります。例えば、タイマーやカウンターアプリケーションでは、2つ以上の7セグメントLEDディスプレイを接続する必要があります。例として、駐車場の車両カウンターでは、実用的な使用のために少なくとも4つのセグメントが必要です。 7セグメントLEDディスプレイの配列を駆動するには、各制御ピンを専用の出力に接続する方法があります。しかし、これはマイクロコントローラーやラッチ統合回路(IC)のピン使用量を極端に高めます。その結果、4セグメントディスプレイの場合、28ピンが必要になります。 ピン数を減らすより良い方法は、すべての7セグメント制御ピンを同じ出力セットに接続し、各個別セグメントの共通ピンを特定の出力に接続することです。この接続モードでは、一度に1つの7セグメントディスプレイのみをオンにすることができます。 7セグメントLEDディスプレイ配列を駆動するためのファームウェアの使用方法 4セグメントディスプレイのピン数を28から11に削減することに成功しましたね。おめでとうございます!では、すべてのセグメントが正しい数字を一緒に表示していることをどのように確認しますか?技術的には不可能なタスクですが、人間の目の限界といくつかの巧妙なファームウェアプログラミングのおかげで、それを実現することができます。 人間の目は、一部の専門家が異なる意見を持つかもしれませんが、 60Hzまでの動きやちらつきしか検出できません。マイクロコントローラは非常に強力で、7セグメントLEDディスプレイを順番に、そしてより高い周波数で切り替えることができます。最終的な結果は、4つのディスプレイが同時に点灯し、正しい数字を表示しているように見える錯覚です。 ここでの鍵は、望ましい英数字の値をメモリ配列に格納し、特定の間隔で正しい出力ピンをオンにすることです。この方法は、制御する7セグメントディスプレイの数が多い場合に適用できます。唯一注意する必要があるのは、マイクロコントローラがより高速なリフレッシュレートを達成でき、その結果、高速スイッチングによる潜在的な電気干渉を引き起こす可能性があることです。 7セグメントLEDアレイのピン数を削減するためのPCB設計 7セグメントLEDアレイを制御しながらピンの数を最小限に抑えるには、LEDの配置とピン接続を注意深く監視することが必要です。
Thought Leadership
国境を越えるPCB設計の制限:エッジクリアランスを超えて拡張する
あなたは今まで、崖の端に立って、足をしっかりと地につけたことがありますか?いえ、転んだら少し怪我をするかもしれないような急な斜面のことではありません。私が言っているのは、ナショナルジオグラフィックで見るような、90度のスタイルで、真っ直ぐに2,000フィート下まで落ちる崖のことです。どんなに崖立ちに慣れている人でも、間違いなく恐ろしい体験です。 頭の中を駆け巡る思考は止まらず、非常に原始的です。もし近づきすぎたら足が滑るだろうか?背中に感じるあの突風はどうだろう?私の好みではありませんが、時には崖を覗き込む必要があります。 同様に、あなた(またはあなたのコンポーネント)が、PCBの端(クリアランス)に立っていて、余裕がほとんどない状態になることがあります。時には、あなたのコンポーネントがその2,000フィート(まあ、実際にはインチ単位に近いかもしれませんが)の崖の端に立つという恐ろしい体験をしなければならず、その存在の残りの期間、ピークパフォーマンスで動作することが求められます。なんという人生でしょう! ボードの不動産が不足している場合、詰め込むべき部品が山のようにある場合、または単にボードを取り囲むシャーシの制約の場合でも、時には許容されるエッジクリアランスの許容範囲を超えて部品を拡張する必要があります。では、これらの境界を超えて拡張するときにどのような要因が影響しますか?以下は、部品が左右に落ちないようにするためのいくつかのガイドラインです。 PCB設計の制限において、十分な銅の接続を保つ ボード上の任意の位置での部品配置の経験則は、まず十分な銅があることを確認することで、頑丈な電気機械的接続ができることです。 エッジクリアランスの許容範囲を超えて冒険する場合、いくつかのことが変わるかもしれませんが、銅に関するルールは変わりません。 まるで崖の端に立つ人が足をしっかりと地面に植える必要があるように、あなたも部品に同様の注意を払う必要があります。追加の予防措置を講じて、物理的な銅の接続が全体を通してしっかりしていることを約束することで、自分自身とあなたの設計を転倒から守ります。 意図を超えて使用する:箱の外で設計する もちろん、PCBを設計する際には、何らかの形で使用されることを期待していますが、製品が使用されている場合、消費者が設計を新しい方法で使用するための独創性を決して割り引くことはできません。言い換えれば、製品が意図したユーザーによって開かれたとき、あなたが想定していなかった目的で使用されるかもしれませんが、ユーザーはそれでもあなたの製品が彼らの基準を満たすことを期待します。 潜在的に危険なコンポーネントの周囲のスペースを見ることで、意図しない製品の使用からも損傷を防ぐために積極的になることができます。特に、コンポーネントが崖っぷちに近づいている場合、設計の箱外の使用例を考慮する必要があります。激しく扱われた場合に曲がったり壊れたりするものはありますか?シャーシへの損傷によって影響を受けることは? 製品の意図された(および意図されていない)使用と、コンポーネントがどのように影響を受けるかについて賢明であることは、発生するであろうグレーエリア/エッジクリアランスの質問の多くに答えるでしょう。 製造上の制限とそれらを防ぐ方法 設計の凍結前に製造業者の制限を考慮するように言った回数に一ニッケルもらっていたら、直面しているどんな崖からでも階段を建てられるかもしれません。PCB設計ソフトウェアでは、思いつく限りのものを設計できますが、それを現実の世界(製造)に移すことは全く別の偉業です。 コンポーネントを互いに近づけたり、設計のエッジクリアランスに近づけたりすると、製造チームが取り入れることがより困難になります。製造業者の機械の能力によっては、最初のRFQを送り出したときに行き詰まる可能性があります。 RFQ。気がつけば、また設計図に戻っています。 これを克服する一つの方法は、設計を製造業者に委託する前に監査と 製造施設のレビューを実施することです。製造業者の能力を確認し、したがって、設計が成功するために必要な能力を持っていることを確認できます。少数の製造業者に連絡を取るだけでも、エッジクリアランスを超えて拡張しているときに制限が存在する場所のアイデアを得ることができます。 エッジを過度に考えすぎないでください エッジクリアランスを超えることはロケット科学ではありません。代わりに、それはリスクのゲームです。このゲームは、「どれだけエッジに近づけるか?」という問いになります。再び、千フィートの高さから見下ろすときに私が尋ねたいと思う質問ではありませんが、PCB設計では選択の余地がないこともあります。
Thought Leadership
リソグラフィの問題がPCB製造の妨げになることを防止する方法
プロジェクターという技術には、本当にイライラさせられることがあります。たとえば、「昔ながらのプロジェクターを使って映画鑑賞会を開こうとバターたっぷりの美味しいポップコーンまで用意したのに、いざ投写してみると映像が歪んでいない個所が1つもない」、「同僚や上司に対して影響力のあるプレゼンテーションをしようとしたところ、映し出された画面では画像とグラフがすべて押し潰されていた」、「授業をしようとしたら、白黒の画像しか投写されなかった」といった具合です。投写された画像が話にならないものならば、すべてをスライドに収まるように何時間もかけたのは無駄だとしか思えません。プロジェクターとディスプレイの位置合わせがうまくできれば、こうした大きなストレスを伴う問題の多くが解消されるでしょう。 PCBの製造でも、プロジェクターと同じような光学的位置合わせが行われます。これはリソグラフィの一部であり、PCBの製造が進む中でパターン層が規定されます。プレゼンテーションのスライドが歪んでしまう事態は避けなければなりません。同様に、PCBの設計ではコンポーネントの配置のずれを阻止しなければなりません。リソグラフィに関して適切に計画を立て、影響を及ぼしたり、問題を引き起こしたりする可能性のある要因について把握する方法を見ていきましょう。 リソグラフィはPCBの製造にどう影響を及ぼすのか PCBの製造で使用されるエッチングや電気めっきのプロセスには、それほど種類がありません。基板が保護用のパターン層でコーティングされていないと、全体が区別なしにエッチング、めっき、またはコーティングされてしまいます。保護用のパターン層に使用されるのは、多くの場合に金属の ステンシル、ポリアミドのシート、またはレジストですが、最も適切な素材が製造プロセスで決定されます。たとえば、金属のステンシルは数枚の基板を製造しただけで損傷して使用できなくなるため、エッチングでは使用しないほうがよいでしょう。 レジストは特定の光(通常は紫外線)の波長に反応します(業界では「感光性」と呼ばれます)。 フォトリソグラフィでは特定の領域が感光され、そこで使用しているレジストが硬化します。処理の次の段階に備え、残りの部分は不純物を除外するために洗い流されます。プロジェクターの画面のように困った影響が出ないよう、どの領域がパターン化されるかを制御するためのマスク(光用のステンシルなど)は光源やPCBと位置合わせをする必要があります。これを怠ると、リソグラフィの問題が現れることになります。 角周辺の弱い光源は製造中に問題を引き起こす リソグラフィにまつわる問題の原因 プロジェクターでは正しく位置合わせできないことがありますが、それは制御できないことが存在するからです。リソグラフィにまつわる問題の潜在的な原因を把握すれば、それをもとに計画を立てることができます。ここでは、下記を念頭に置いてください。 影: 製造業者が清潔な環境を維持していれば、この問題が発生することはないでしょう。ただし、プロジェクターの前に置かれた椅子が邪魔をして画像の一部が投写されなくなるように、マスクに付着した粒子によって影が作られると、その部分のレジストが光によって硬化されません。想定どおりに硬化しなかった箇所は、次の処理段階でエッチングされることになります。 光量と感光: レジストが感光される光の量は、積分のように計算されます。これは、総感光時間に対する光の輝度ですが、タイミングがずれたり、光が弱すぎたりすると、レジストが完全に硬化できるだけの十分な光の量が得られなくなります。また、光源が均一でないこともあります。この場合はレジスト全体で硬化が一様でなくなり、結果にばらつきが出てしまいます。エッチングやめっきの工程が迅速に行われ、製造業者が硬いレジストを確保していれば問題はないかもしれませんが、そうでない場合は次の段階でレジストがはがれ落ち、基板の状態が完全ではなくなってしまう恐れがあります。 アスペクト比: 一般的な問題は、光、マスク、またはPCBのわずかな角変形です。これはプロジェクターが不適切な角度で置かれているために、スライドの上部と下部の幅が異なってしまうのに似ています。PCBでは、レジストのマスクに正しくないアスペクト比(開口部の幅に対するステンシルの厚さ)が適用されたためにこの問題が発生します。基板でこれが起きると、完成した基板の半田接合の品質が低下する可能性が高くなり、これが多くの場合に開回路となります。基板が適切に硬化しないと、内層と外層で 収縮、膨張、反りが異なる割合で発生する場合もあり、アスペクト比の問題を引き起こします。これはフォトリソグラフィにのみあてはまるものではなく、後で基板に反りが発生することもあります。多くの場合、こうした収縮や膨張はPCBの全体的なサイズに影響を受けたCTEの不一致が原因ですが、基板が大きいと問題が発生する傾向が高くなります。 整列: 整列ミス(位置合わせミス)は、パターンが本来の場所からミリメーター単位、またはそれ未満でずれた場合に横方向または縦方向で発生します。要素のサイズが縮小すると、半田パッドやビアがずれてしまいやすくなるため、整列ミスのわずかなずれが大きな影響を及ぼします。許容差が小さい場合は、製造業者が基板の仕様に一致するだけの微細加工能力があるのか、位置合わせを行えるのかを確認するようにしてください。 許容差
Thought Leadership
優れた回路図ソフトウェアを使って、回路図とPCBを簡単に同期する
「先人の知恵に勝る学校はない」そんな言葉を耳にされたことがあるかもしれませんが、実際のところはどうなのでしょうか? 私が子供の頃の「先人の知恵」は、ワープロではなくタイプライターに文字を打ち込むことを教えてくれましたが、今もタイプライターを使っていたら、この記事を書くのに相当な時間がかかるでしょう。それに、スペルチェックなどの使い慣れた便利な機能も利用できなければ、バックスペースキーを押して文章を書き直すこともできません。使う紙は1週間もあれば山積みになってしまうでしょう。先人の知恵が金塊よりも貴重なのは確かですが、先人が使っていた技術が必ずしも便利であるとは限りません。 たとえば、PCBの設計アプリケーションで使用する同期データについて考えてみましょう。回路設計ツールには設計のすべてのネットが含まれ、レイアウトツールでそのデータを使用して基板が設計されます。ここで重要なのは、回路図のネットデータをレイアウトツールに渡してから回路図に戻すことです。実感していただけないかもしれませんが、古い手法では1つのツールから別のツールへこのデータを転送するのが非常に厄介でした。現在でも、一部の設計ツールではこれが難しい作業になることがあります。 昔話をするのは楽しいものですが、現在の状態にたどり着くまでにどれだけ大変だったのかがわかれば、話はもっと面白くなるでしょう。優れた最新のソフトウェアでは回路図と基板の同期が自動的に能率的に実行されますが、昔はそうではありませんでした。古い技術では手間がかかったものの、今はこうした同期を行える最新アプローチの利点を活かして、作業を効率的に進められるのです。 ネットリストの抽出 昔はさまざまな回路設計アプリケーションやレイアウトツールが使用されていました。こうしたツールの中にはパッケージ化されているものもありましたが、異なるベンダーが提供するツールを組み合わせて使うほうがはるかに一般的でした。つまり、異なるシステムのレイアウトツールに同期データを渡すためには、回路アプリケーションからネットリストを抽出する必要があったのです。 当時、サービス機関でPCB設計者として働いていた私は、顧客が使用するいろいろな種類の回路図ソースのネットリストデータを使用しなければなりませんでした。ネットリストが自分が使用しているレイアウトソフトウェアでそのまま使用できる場合もありましたが、大半はなんらかの修正を加えないと機能しません。こうした修正では、ネットリストにコンポーネント情報を追加したり、正しいデジグネータを割り当てたりします。お察しのとおり、ネットリストを手動で編集して使用可能な形式に変更すると、データの入力エラーが発生しやすくなります。一度、同僚が10個ではなく100個の部品を注文してしまい、会社を破産させそうになったことがあります。 レイアウトが完成すると、レイアウトツールからネットリストを抽出して顧客に戻します。レイアウト中にピンやゲートがスワップされるため、ネットリストは開始した時点のものとは違います。顧客にはすべてのスワップの現在と過去のリストも提供する必要がありました。そのため、私たちの側ではさらに手動での編集が必要になり、顧客側でも手動で変更を行う必要がありました。すべてを正しく完了できていたことが不思議になるほどです。 PCBのレイアウトに送信するネットリストデータが保存されたフロッピーディスク 2つの異なるツールをつなぐインターフェース 幸いにも、現在の大半のCADシステムでは、回路図とレイアウトの同期がはるかに容易になっています。とはいえ、回路図ツールとレイアウトツールでシステムの設定が異なるケースは、今もたくさんあります。これらのツールをやり取りさせるために、こうしたシステムの同期プロセスでは多くの場合にインターフェースが使われています。 このインターフェースには、2つのツールが一緒に機能する1つの統合ツールとして表示されます。ただし、いずれかのツールに加えられた変更が原因でインターフェースが中断すると、問題が発生することになります。インターフェースの一部が中断したためにいくつかの機能が使用できなくなることもあれば、インターフェースが完全に機能しなくなってユーザーが足留めを食らってしまうこともあります。また、他のツールからアクセスできなくするために、ソフトウェアのベンダーがインターフェースの機能を廃止することも考えられます。この場合、顧客は立ち往生することになり、通常の設計作業を継続できなくなります。 優れた回路図ソフトウェアによる同期 回路設計ツールとレイアウトツールが1つのソフトウェア会社によって構築されると、その統合設計環境では同期プロセスの信頼性が向上するほか、設計で最良の結果を出すことができるようになります。ツールが同期されるうえ、多くの場合に選択肢と機能が充実し、インターフェースも提供されます。また、それぞれのツールが更新、改善される中で、設計の一部として回路図とレイアウトの同期プロセスも改善されるため、正確性と効率性が高まることになります。 同期データの転送にインターフェースや手動で編集したネットリストを使用している場合は、こうした作業を統合設計環境で自動的に処理してくれる PCB設計ツールの検討をおすすめします。手動の編集には人的エラーが潜在し、インターフェースでは役立つ機能の一部を利用できない可能性があります。一方、回路設計ツールと基板のレイアウトツールが連携するように設計されている PCB設計システムを活用すれば、最良の結果を挙げることができるでしょう。 優れたソフトウェアによる回路図の同期は、両方のツールが連携する1つの統合設計環境で実行される 私はタイプライターを使ってこの原稿を書きたくはありません。味わいがあるのは確かですが、皆さんもPCB設計を手作業で進めたり、データを郵便で送ったりしたくはないでしょう。私がお伝えしたい先人の知恵とは、「最新のPCB設計ソフトウェアを活用すれば作業が簡単になる」ということです。 1つの統合された設計環境で回路設計ツールと基板のレイアウトツールの両方をお使いになりたい場合は、
Thought Leadership
Uターンはしたくない: PCBのトレース配線に関するガイドライン
自分が生まれ育った町の当時の姿を思い出すのは、お気に入りのテレビ番組のエンディングや、映画の名作が公開されてから何年も後に続編を観ることにとても似ています。私が育った町には碁盤目状のとても広い通りがあったため、繁華街でも縦列駐車をする必要がありませんでした。ただし、町はとても小さく、2人の運転手が車が一時停止して話をしていると渋滞が発生してしまいます。それは交通事故よりもよくある光景でした。久しぶりに故郷を訪れてみると、町は変わっていました。広い駐車スペースがなくなり、新しい車線が追加されていたのです。 隠喩的にも文字通りにとらえても、町は私が子どもの頃よりずっと新しくなっていました。確かに交通事故や渋滞は増えたものの、先見性のある都市計画によって、町が乱雑にならないように維持されています。PCBもこれと同じで、流れを妨げたり、エラーを引き起こしたりする重大な事故や失敗は、適切な計画によって回避できます。正しいPCB設計とは、単に交通警官を横断歩道に配備することにとどまりません。許容できるだけのスムーズなレベルで交通の流れを維持するには、必要になる電源回路とコンポーネントの接続についてかなり早い段階から把握して設計を進めなければなりません。 PCB設計のトレース配線では、都市計画と同じくらい注意が必要になります。不適切な配線が交通事故を起こしたり、何百人もの人々を仕事に遅刻させたりすることはありませんが、ショートを発生させることはあります。比較的交通量の少ない道路に無駄に長い信号があったり、交通量の多い交差点のそばに一時停止の標識がなかったりするのと同じように、間違った トレース配線では半田接合の品質が損なわれるほか、内層のトレースがショートを引き起こすこともあります。トレース配線についてよく理解しておけば、発生する「交通量」に対応するPCBを設計できるようになります。 この交差点のように配線しないでください。1つのノードに多くの接続がありすぎると、ショートの危険が高くなります。 PCBのトレース配線でブレーキを踏むタイミング トレースの配線は、赤信号でも黄色信号でも青信号でもありません。ご存知のように、黄色信号に対する解釈は運転手によって違うため、より多くの要素がトレースに影響することになります。製造時と稼働時にショートが発生する可能性に影響を及ぼす要素は下記のとおりです。 トレース幅: 道路の幅を変更するのと同じように、トレース幅は流せる電流量に影響を及ぼします。小さな通りに新しい店が開店したときのように、オーバーロードはたくさんの問題を引き起こします。パッドに接続する前にトレースの幅を狭めると、それによって抵抗、付随する加熱、基板の損傷が増加します。概して、トレース幅を狭めるのは好ましくありません。 接続: パッドやノードへの接続数を増やすと、ショートが発生するリスクが高くなります。分岐させたトレースはさらに近接する可能性が高くなり、より多くの角に電荷が蓄積することになります。さらに一般的である 不均一な半田ペーストは、コンポーネントの傾きや半田ブリッジの原因になります。1つのパッドで多数のトレースを接続する必要のある ネットやオートルーターの出力については慎重に判断するようにしてください。 パッドのサイズ : パッドが大きくなるほど作業できる領域が拡大しますが、パッド間の距離も考慮に入れておく必要があります。ここでは半田ブリッジが発生しやすいですが、ギャップが大きいほど半田ブリッジが発生しにくくなります。 一貫したサイズ: パッドとトレースのサイズを一貫させると、特に 多層基板に対処している場合に、デザインルール チェックとエラールール
Pagination
First page
« First
Previous page
‹‹
ページ
17
現在のページ
18
ページ
19
ページ
20
ページ
21
ページ
22
Next page
››
Last page
Last »
他のコンテンツを表示する