Filter
Clear
Tags by Type
Software
Webinars Altium Designerによるプリント基板の設計 プリンテッドエレクトロニクスは3D印刷と同様に一般化しつつあります。急速に広がりつつあるこの技術により、製造の分野において新しい可能性が生まれ、技術者や設計者は、これまで対応できなかった市場に製品を送り出すことが可能になりました。新しい基板とインクは、生体医療から航空宇宙、家電機器まで、様々な用途に対応するために開発されています。 この技術に対応できる契約製造業者が多数、出現したことで、コスト競争が激しくなりつつあります。試作と量産を迅速に行えることは多くの可能性を秘めています。Altium 365®を使用すれば、設計プロセス全体で製造業者と情報を常に直接共有できます。 以下は、セッションで紹介されたトピックとなります。 現在のプリンテッドエレクトロニクス設計で使用する独自の配線技法 プリンテッドエレクトロニクス用にレイヤー構成を指定する方法 プリンテッドエレクトロニクス用にビアを配置する方法 製造業者がすぐに使用できるデザインパッケージを作成する方法 Altium 365を使用して製造業者と直接、情報を共有する方法 今すぐ Altium Designerの無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください!ご不明な点などございましたら、 お問合せフォームにご入力ください。
Webinars Altium Designer 21:より優れた設計手法 設計プロセスでは多くの場合、退屈な繰り返し作業が求められます。Altium Designer 21では、ユーザーの皆様からのフィードバックを基に長く使用されている機能に見直しを加え、ユーザーエクスペリエンスを改善するとともにパフォーマンスと安定性の向上が行われており、より優れた環境で設計を行うことができます。これらの改良点により、既存の設計タスクが合理化され、リアルな3Dモデリングで精巧なリジッド設計またはリジッドフレキシブル設計を完成させることができます。 さらに、Altium 365®はAltium Designerの最新リリースで、従来にも増して重要な役割を果たしています。詳しくご覧ください。 以下は、セッションで紹介されたトピックとなります。 SPICEシミュレーションの拡張 リジッドフレキシブル設計: 基板プランニングとレイヤースタックの定義 高速設計:トロンボーンとノコギリ歯のチューニング 回路設計の改良:一般的なコンポーネントとネットのプロパティ Altium 365:プロジェクト履歴、競合回避、コメント 今すぐ Altium Designerの無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください!ご不明な点などございましたら、 お問合せフォームにご入力ください。
ディレクティブを使ってより精密に回路情報を伝える ディレクティブを使ってより精密に回路情報を伝える 回路図の役割は、デジタルデータ(ネットリスト)と視覚の両方でPCBレイアウトやその他の工程に正しく情報を伝える事です。このため、回路図では、電気的なオブジェクトによる作図に加え、図による補足やテキストでの注釈が必要になります。 Altium Designerでは、ネットリストを生成する為の電気的オブジェクトとして、コンポーネントとネット識別子が用意されており、図による補足や注釈には、ドローイングツールとテキストツールが用意されています。 これらのオブジェクトは、全て、[配置] メニューから呼び出して利用できます。そして、この中のコンポーネント(パーツ)については、「 回路図作成の事始め - 部品を探す・選ぶ・並べる」、ネット識別子については「 回路図の結線を正しくシンプルに行うためのヒント」に解説がありますのでご覧ください。 また、ドローイングツールとテキストツールを利用する為のコマンドも [配置] メニューにあり、その種類は、コマンド名とアイコンを見れば一目瞭然です。 そして、この [配置] メニューには [ディレクティブ] というコマンドがあります。この「ディレクティブ」は電気的なオブジェクトですが、配線そのものを行う為のものでは無くパラメータを付加する為のものです。そして、この情報は、[Update PCB ...] コマンドでネットリストと共にPCBに転送され、デザインルールのパラメータとして利用されます。
高密度なBGAの配線を容易にするAltium Designerの機能 高密度なBGAの配線を容易にするAltium Designerの機能 端子数の多いLSIでは、BGAパッケージが良く利用されます。このBGAは、端子の密度が高いのでパッケージを小さくでき、小型化が求められる携帯機器に最適です。しかし、密集した端子の周辺にはわずかなスペースしか残っておらず、全ての端子から配線を引き出すのは至難の業です。これは、高密度な端子配列の代償として突き付けられた課題であり、端子密度に見合うところまで配線密度をあげる事しか解決の道はありません。 そこで、今回はこの高密度な配線を可能にするAltium Designerの機能を紹介したいと思います。 BGAパッケージは、普及し始めてから20年以上経ちます。今では携帯機器に当たり前のように使われており、その特徴は皆さんご存知のはずですが、今回は念のため要点のおさらいから始めたいと思います。 BGAパッケージについて BGAパッケージはBall Grid Arrayの略でその名の通り、格子上に配置されたボール状の端子を持つ表面実装部品です。 端子数は、20以下のものから2000を越えるものまであります。端子の間隔は、1.5mm、1.27mm、1.0mm、0.8mm、0.65mm、0.5mmのものがあります。また、端子の配列は、パッケージの中心部付近に端子が無いものと、端子面の格子上の全てが端子で埋め尽くされたフルグリッドのものがあります。 BGAは、それまで高密度実装用として使用されてきたPGAやQFPに対して、さらに実装密度を上げるためのものです。構造的にみてもPGA端子の格子配列とQFPの表面実装の特徴が組み合わさったものであるといえます。 BGAの配線は極めて困難 BGAパッケージを使うと実装密度を飛躍的に高めることができますが、配線は困難になります。BGA端子の周りは、配線の経路を見つけ出すのが難しいだけでなく、実際に線を置いていくのにも多くの手間がかかります。それは、次のような理由によるものです。 BGA は表面実装 BGAは、基板を貫通する端子を持たないので、実装面以外の層では端子に直接、接続する事はできません。このため、実装面以外の層との接続には必ず、VIA(ビア)を配置しなくてはならず、このVIAが配線スペースを浪費します。 BGA は狭い間隔で端子が何列も並んでいる QFPパッケージも狭い間隔で端子が並んでいますが、BGAはQFPのように一列ではなく何重にも並んでいます。この為、外側の端子の配線が内側端子からの引き出しの邪魔になり、簡単には外に引き出せません。 BGA は端子が多い
次のプロジェクトでサーモカップルを使用する方法 Altium Designer Projects Whitepapers 次のプロジェクトでサーミスタを使用する方法 サーミスタは、電子プロジェクトで使用する可能性のあるすべての主要な温度センサーのタイプを見ていくシリーズの最終 センサータイプです。このシリーズでは、プロジェクトでさまざまな温度センサーを実装する方法について見てきました。シリーズの最後には、実際の条件を使用してセンサーと実装を頭ごなしの競争に出します。この実世界でのテストを通じて、さまざまなセンサーがどのように振る舞い、変化する条件にどのように反応するか、また、感知した温度の出力がどれだけ線形で正確かについて、より良い理解を得ることができます。 このプロジェクトの設計ファイルは、他のすべてのプロジェクトと同様に、オープンソースのMITライセンスの下で GitHubに公開されています。商用プロジェクトであっても、回路やプロジェクトを自由に使用することができます。 温度センサーは多くの産業にとって不可欠であり、サーミスタはそれらの中でも特にそうです。サーミスタは非常に正確であり、感知温度の範囲が広いため、多くの産業用サーモスタット、プロセス制御、監視アプリケーションに理想的です。このシリーズでは、さまざまなセンサータイプとそれらを最適に使用する方法を見ていきます。次のような内容を見ていきます: 負温度係数(NTC)サーミスタ 正温度係数(PTC)サーミスタ 抵抗温度検出器(RTD) アナログ温度センサIC デジタル温度センサIC 熱電対 以前、この温度センサに関するシリーズの導入で、2つのプロジェクトテンプレートを構築しました。これらのプロジェクトテンプレートはそれぞれ同じインターフェースとコネクタの配置を持っており、私たちが見ているさまざまな温度センサーすべてに対して標準的なテストセットアップを持つことができます。これらのプロジェクトの1つはデジタル温度センサー用に、もう1つはアナログ温度センサー用に設計されています。この記事では、両方を使用し、デジタルプロジェクトテンプレートを 高解像度ADC用に、アナログテンプレートを他のすべての実装用に使用します。 このシリーズの結論として、これらのセンサーカード用に2つのホストボードを構築します。1つは検証目的で単一のカードをテストするために設計され、もう1つはカードのスタックにインターフェースするために設計されます。この2番目のホストボードは、複数のセンサーを搭載した後、すべてのセンサー実装のパフォーマンスを評価する際に使用されます。 熱電対 もし、これまで見てきたセンサーでは測定できない極端な温度を測定したい場合、サーモカップルを探しているかもしれません。サーモカップルは、これまで見てきた他のセンサーとは全く異なる方法で動作し、抵抗の変化を測定するのではなく、異なる合金の金属を溶接して生成される電位差( 電圧)から測定します。これにより、適切なサーモカップルを使用すれば、絶対零度から鉄や鋼の融点を超える温度まで測定することができます。サーモカップルは構造も非常に頑丈で、このプロジェクトで見てきた他のセンサーほど簡単には壊れません。サーモカップルは抵抗温度検出器ほど正確ではありませんが、特に広範囲な温度範囲を考慮すると、ほとんどのアプリケーションに対して十分な精度を提供します。 サーモカップルが温度から電気を生成するという事実は、 電源として宇宙探査においても価値があります。放射性熱源の周りに数千のサーモカップルを直列に配置することで、放射性同位体熱電気発電機が作られ、これはボイジャー探査機、カッシーニ、ニューホライズンズ、そして火星のキュリオシティローバーなどの深宇宙ミッションに使用されました。 私たちの目的において、正極にニッケルクロムを、負極にニッケルアルミニウムを使用したK型熱電対は、最も一般的で最も安価な熱電対のタイプであり、私たちが使用するものです。K型熱電対を使用すると、-270℃から約1372℃までの温度を測定でき、それぞれ-6.458mVから54.886mVを生成します。ご覧の通り、この広い温度範囲を通じて生成される電圧の量はかなり少ないため、この微小な電圧から温度を測定するためにはいくつかの回路が必要になります。最大温度まで耐えられるK型熱電対がすべてそうであるわけではないことに注意する価値があります。非常に低コストのK型熱電対の多くは、絶縁体が劣化する前に500〜700℃しか扱えないかもしれません。低コストの低温K型熱電対と高コストの高温K型熱電対の実装は、基本的に同じになることが多いですが、私たちが読み取っているのは熱接合部が提供する電圧ポテンシャルであるためです。それにもかかわらず、すべての金属が同じように作られているわけではなく、より安価な熱電対は純度の低い金属を使用していたり、他の近道をしていることがあり、より高価なオプションの方が良い選択となることがあります。