Filter
Clear
Tags by Type
Software
PCBの設計時間を確実に短縮できる5つのヒント Whitepapers PCBの設計時間を確実に短縮できる5つのヒント ほとんどの技術者とPCB設計者は、習慣を重視します。製品を作り上げるための適切なロードマップが出来上がると、常にそのロードマ ップを使用する傾向があります。技術者には多くの場合、新しい技法を試したり、作業を行うための新しい革新的な方法を探したりするような時間はありません。これは必ずしも悪いことではありませんが、競合他社が優れた製品を自社よりも迅速かつ安価に製造している場合、これは良い兆候ではありません。競合力を維持するには、常に新しい技法や革新的な方法を取り入れていく意思が必要です。PCB設計ツールのAltium Designer®を使用して、PCB設計に必要な時間を全体的に短縮するための5つのヒントについて紹介します。 1) 3DモデルからPCBの基板外形を生成 従来の基板は、比較的同じ形で基本的に長方形でした。いつもの円弧と直線を使用して、目的の形状と大きさで標準的な基板の外形を作成することは、簡単かつ日常的な作業でした。しかし、今日の設計は小型化が進んでおり、機構的な制約はますます増え続けています。多くの場合、基板には固有の形状があり、取り付け穴や機械的制約があらかじめ定められています。リジッドフレキシブル基板設計も、ますます主流になりつつあります。PCB設計者は、従来なら一般的な基板の外形を数分で作成できましたが、今では同じ作業に何時間も必要です。 機構技術者は、製品のすべての要素をシームレスに、多くの場合は千分の数インチ以内の誤差で正しく配置することを求められています。 これらの技術者が使用する機構CADシステムは、まさにこのような作業に特化して作成されています。機構CADパッケージでは、固有の基板外形を非常に簡単に作成できるので、活用してみることをお勧めします。PCBの設計プロセスを迅速化するには、機構チームがPCBの3D STEPモデルを作成し、そのモデルをAltium Designerにインポートするのが最適な方法です。これによって、マウスを数回クリックするだけで、基板外形を定義できます。この作業により、取り付け穴、機構的カットアウトや制約など、必要な機構的な仕様を正確に遵守した基板外形を作成できます。 2) Altium Designer統合システム開発プラットフォーム 従来は、ほとんどのPCB設計チームがそれぞれ種類の異なるツールを使用しており、ツール間でのデータのやり取りは、ネットリストや他のインポート/エクスポート方法により行われていました。回路図ツール、PCBツール、ガーバーツール、DFMツールがそれぞれ別のメーカー 製であるということも珍しくありませんでした。シミュレーションツールなど他のツールについても同様です。これらの別々のツールは、スクリプトで結合されるか、ネットリストや他のデータストリームを利用してデータのやり取りが行われていました。ツールの1つのソフトウェア が更新や変更された結果、他のツールに連鎖して悪影響が及ぶことも珍しくありません。このような問題が発生すると、製品を設計しながら同時にEDAソフトウェアの問題も解決する必要があるため、製品開発サイクルに望ましくない遅延が発生します。ツールが製品スケジュ ールの妨げになってはいけません。設計ツールは問題ではなく、解決策であるべきです。ツールは、より高性能に、そしてツールを使用する 技術者の作業は、より楽になることが必要です。(※続きはPDFをダウンロードしてください) 今すぐ Altium
エンベデッド ボードアレイを使用して、PCB基板を迅速、かつ費用対効果の高い方法で製造する Whitepapers エンベデッド ボードアレイを使用して、PCB基板を迅速、かつ費用対効果の高い方法で製造する 最高の品質を持つ製品を可能な限り効率的に、効果的に製造するというのは、すべての設計者が関心を持っていることです。基板を 製造するための最も費用対効果が高い方法は、基板のパネライズ(面付け)の方法で、長年にわたって標準の方法として使用されて きました。このホワイトペーパーでは、Altium Designer®のエンベデッド ボードアレイ機能を使用して、パネライズのプロセスを迅速 に行うための手引きを紹介します。 はじめに パネルレールを使用すると、コンポーネントと基板の端との間にクリアランスが確保できるため、製造上の利点があります。パネルは これらの端を使用してコンベヤー ラインに沿って移動され、これによって基板の両面にコンポーネントを配置できます。複数の基板 を1つのパネルに集約することでも、コストを削減できます。パネライズの例を図1に示します。 全ての基板のケースには、最小PCBサイズが指定されています。多くの小さな基板を出荷時に処理、および保護するには、パネルを 使用して製造する方が安全です。BGAやQFNなど、リードを使用しない部品についてはX線検査が必要で、追加コストが必要になりま す。この追加コストは部品の数よりも基板の数に大きく影響されますが、パネライズによってこのコストを削減可能です。 パネライズの概要 適切なパネルを作成するのは、時間が必要で面倒な作業です。基板に変更を加える必要があるときはパネルを作り直す必要があり、 この作業は苦痛です。Altium Designerは、この問題を解決するためエンベデッド ボードアレイ機能を新たに搭載しました。Altium Designerでのパネライズは、ガーバー作成プロセスではありません。エンベデッド
ポリゴンとプレーン、どちらが良いか Whitepapers ポリゴンとプレーン、どちらが良いか 電源/GNDネット用の大きな銅箔領域を実装する方法には、ポリゴンとプレーンの2つの選択肢があります。電源ネットを実装するのにどち らの方法が良いですか、というご質問を多くいただきますが、どちらを使っても最終的な結果はほぼ同じになるため、唯一の正解というも のは存在しません。どちらの構成でも、適切な電源/GNDネットが作成できます。このホワイトペーパーでは、実際の要件に合った方法をご 自身で選んでいただくための参考として、ポリゴン構成とプレーン構成の類似点と相違点について解説します。 ポリゴン ポリゴンとは、いわゆる「銅箔(copper pour)」や「ポリゴン (polygon pour)」と呼ばれるもので、PCBの領域のうち、既存のコ ンポーネントやトレースの周りに銅を流し込み、塗りつぶした部分 のことを言います。ポリゴンは、信号層(ポジで表現される)上のみ に定義できます。配置すると、銅が追加されます。 ポリゴンがよく使用される場所は次のとおりです。 • コンポーネントや配線が存在する表面レイヤー • 配線が存在する内層の信号層と、電源専用の信号層 • コンポーネントや配線が存在しないGND ポリゴンは、ソリッドの銅箔、格子状の銅箔、または単に連続した
コンポーネントをルームにグループ化してレイアウトを効率的に行う方法 Whitepapers コンポーネントをルームにグループ化してレイアウトを効率的に行う方法 コンポーネントの配置とトレースを適切に管理するための鍵となるのは、オブジェクトを別々に修正するよりも、各種の技法を使用してオブジェクトをグループ化することです。多くのユーザーは、コンポーネントを別々に基板レイアウトに配置することを嫌がります。このホワイトペ ーパーでは、PCB設計ツールのAltium Designer®を使用することでレイアウト管理がどのように簡単になり、時間を節約でき、プロジェクトの納期を守れるよう になるかについて詳しく解説します。 はじめに コンポーネントとトレースが適切に整理されていないと、コンポーネントのレイアウトが非常に面倒になる場合があります。設計レイアウトを管理するための最も一般的な方法は、ルームを使用することです。ルームを使用すると、コンポーネントの配置をより的確に管理でき、コンポーネントがどこから来たものかを簡単に特定できます。この点については、以下で詳しく説明します。 配線が行われておらず、たくさんのコンポーネントが使用されていれば、複雑な回路の接続は苦痛に満ちたものとなります。レイアウト全体にコネクションラインを作成するために多くのリソースが消費され、システムの性能が大幅に低下し、コンポーネントの配置は遥かに難しくなります。 ルームの使用 ルームは一般に、デザインを回路図からPCBエディタに移すときに使用され、各ルームは、それぞれ回路図シートごとに定義されていま す。コンポーネントは各シート上にコンポーネントクラスとして定義されており、生成方法はプロジェクトの構成により定義されます。例えば、 プロジェクトに5種類のシートがあり、それぞれに特定のコンポーネントが含まれている場合です(ここでは、フラット設計と階層設計につい ては考慮しないものとします)。回路図がプロジェクトのPCBレイアウトに送られたとき、PCBレイアウトには、図1のように、シートで定義され たルームと、使用されている対応コンポーネントがそれぞれ含まれます。ECO生成後に、ルーム内に配置されていないコンポーネントについては、それらのコンポーネントに手作業でルームを定義するか、新しいルームにコンポーネントをドラッグできます。 ルームの便利な点は、ルーム定義の設定によりルームとコンポーネントをロックできることです。図2のようにコンポーネントをルーム内にロックすると、 マウスを1回ドラッグしてルームの位置を変更するだけで、割り当てられた全 てのコンポーネントも一緒に移動できます。その後でロックを使用するとル ームを固定できます。これにより、オブジェクトを個別に移動したり、オブジェクトのグループを選択したりする面倒な手作業は不要になります。もちろん、 コンポーネントをロック解除して別々に位置を変更することも可能で、オブジェクトを1つだけ変更する必要がある場合にも柔軟に対応できます。 (※続きはPDFをダウンロードしてください) 今すぐ
フットプリント ライブラリでの3Dコンポーネント外形の作成 Whitepapers フットプリント ライブラリでの3Dコンポーネント外形の作成 はじめに 今日のPCB設計プロセスでは、機構設計のワークフローを電気設計ツールに統合できることが必要です。不正確な設計データをECADとMCADの間で転送すると、双方の設計チームが不満を持つだけでなく、PCBを最終的なアセンブリに収納するために必要な再設計の回数が大幅に増加することになります。そして、電気設計ツールの実際の3D能力がどのようなものであっても、正確なコンポーネントの3Dモデル情報がなければ、機構的なクリ アランスを正確に分析できません。 3Dモデルがどの程度対応されているかは、EDA環境ごとに異なります。一部のEDA環境では3Dモデルが対応されていないため、全ての機構的な情報をMCADツールから供給する必要があります。また、DXFやIDFのような時代遅れの方法で情報を交換する環境もあります。PCB設計ツールのAltium Designerは埋め込みSTEPモデルを対応しており、正確なモデル化情報をMCADの部門に渡せるだけでなく、ECADツールで直接、使用するこ ともできます。 STEPモデルの入手と埋め込みは、ホワイトペーパー「フットプリントへの3D STEPモデルの埋め込み」で詳しく説明されているように、ごく簡単なプロセスです。ただし、STEPモデルを使用できない、または単に使用が望ましくない場合もあります。例えば、社内にMCAD部門が存在しない場合や、3D MCADツールを保有していない可能性がある場合。または、組織でいかなる種類でも外部ソースから入手されたCADデータの使用が認められていないため、モデルをダウンロードできない場合や、他のセキュリティ上の制限から、インターネットへのアクセスが一切禁止されていることもあるでし ょう。 幸い、Altium Designerではツール内で直接、コンポーネントの機構的な詳細を作成する方法が用意されています。フットプリントライブラリ (.PcbLib)自体で行うのが理想的ですが、1回だけなら基板レベル(.PcbDoc)でも適切に行えます。このホワイトペーパーでは、3Dモデルを作成する 方法について説明し、共通コンポーネントを作成するためのヒントを紹介します。 内部的な3Dモデルタイプ Altium Designerでは、機構モデルを作成するために、押し出し、円筒、球形の3種類の基本的な3D形状が用意されています。それぞれは単独でも、他の形状と組み合わせて使用することもできます。最も一般的に使用されるのは、押し出しモデルでしょう。押し出しモデルを作成するには、任意の多角形を描画してから、高さの値を指定します。形状は、その高さまで上方(または、下方)に押し出されます。 円筒、および球形のタイプは説明不要でしょう。円筒の半径、高さ、回転の値を入力すると、それに応じた形状がシステムにより描画されます。球形は、 半径のみで十分です。これらの単純な形状を使用して、単純なものから、驚くほど複雑なものまで、広範な種類の表面実装およびスルーホールのコンポーネントを作成できます。 モデルの作成